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ABSTRACT. Polythermal conditions are ubiquitous among glaciers, from small valley glaciers to ice
sheets. Conventional temperature-based ‘cold-ice’ models of such ice masses cannot account for that
portion of the internal energy which is latent heat of liquid water within temperate ice, so such schemes
are not energy-conserving when temperate ice is present. Temperature and liquid water fraction are,
however, functions of a single enthalpy variable: a small enthalpy change in cold ice is a change in
temperature, while a small enthalpy change in temperate ice is a change in liquid water fraction.
The unified enthalpy formulation described here models the mass and energy balance for the three-
dimensional ice fluid, for the surface runoff layer and for the subglacial hydrology layer, together in
a single energy-conserving theoretical framework. It is implemented in the Parallel Ice Sheet Model.
Results for the Greenland ice sheet are compared with those from a cold-ice scheme. This paper is
intended to be an accessible foundation for enthalpy formulations in glaciology.

1. INTRODUCTION
Polythermal glaciers contain both cold ice (temperature
below the pressure-melting point) and temperate ice (temp-
erature at the pressure-melting point). This poses a thermal
problem similar to that in metals near the melting point
and to geophysical phase-transition processes in mantle
convection and permafrost thawing. In such problems the
part of the domain below the melting point is solid while
the remainder is at the melting point and is a solid/liquid
mixture. Generally, the liquid fraction of that mixture may
flow through the solid phase. For ice specifically, viscosity
depends both on temperature and liquid water fraction,
leading to a thermomechanically coupled and polythermal
flow problem.
Distinct thermal structures in polythermal glaciers have

been observed (Blatter and Hutter, 1991). Glaciers with
thermal layering, as in Figure 1a, are found in cold
regions, such as the Canadian Arctic (Blatter, 1987; Blatter
and Kappenberger, 1988); this structure is referred to as
‘Canadian type’ hereafter. The bulk of ice is cold except
for a temperate layer near the bed which exists mainly due
to dissipation (strain) heating. The Greenland and Antarctic
ice sheets exhibit such a thermal structure (Lüthi and others,
2002; Siegert and others, 2005; Motoyama, 2007; Parrenin
and others, 2007). Figure 1b illustrates a thermal structure
commonly found on Svalbard (e.g. Björnsson and others,
1996; Moore and others, 1999) and in the Scandinavian
mountains (e.g. Schytt, 1968; Hooke and others, 1983;
Holmlund and Eriksson, 1989), where surface processes in
the accumulation zone form temperate ice. This type will be
called ‘Scandinavian’.
A theory of polythermal glaciers and ice sheets based

on mixture concepts is now relatively well understood
(Fowler and Larson, 1978; Hutter, 1982, 1993; Fowler, 1984;
Greve, 1997a). Mixture theories assume that each point
in a body is simultaneously occupied by all constituents
and that each constituent satisfies balance equations for
mass, momentum and energy (Hutter, 1993). Exchange

terms between components couple these equations. Here
we derive an enthalpy equation from a mixture theory
which uses separate mass- and energy-balance equations.
We leave the momentum balance unspecified in general, as
beyond the scope of this work, though momentum or stress
balance is assumed to provide velocity and pressure fields
for the mixture.
Two types of thermodynamical models of ice flow can

be distinguished. So-called ‘cold-ice’ models approximate
the energy balance by a differential equation for the
temperature variable. The thermomechanically coupled
models compared by Payne and others (2000) and verified
by Bueler and others (2007) were cold-ice models, for
example. Such models do not account for the full energy
content of temperate ice, which has varying solid and liquid
fractions but is entirely at the pressure-melting temperature.
A cold-ice method is not energy-conserving when temperate
ice is present, because changes in the latent heat content
in temperate ice are not reflected in the temperature
state variable.
Cold-ice methods have disadvantages specifically relevant

to ice dynamics. Available experimental evidence suggests
that an increase in liquid water fraction from 0 to 1% in
temperate ice softens the ice by a factor of ∼3 (Duval,
1977; Lliboutry and Duval, 1985). Such softening has
ice-dynamical consequences, including enhanced strain
heating and associated increased ice flow. Such feedback
mechanisms are already seen in cold-ice models (Payne and
others, 2000) but they increase in strength whenmodels track
liquid water fraction.
Because liquid water is generated within temperate ice by

strain-dissipation heating, a polythermal model can compute
a more physical basal melt rate. Note that a cold-ice method
which models strain-dissipation heating in temperate ice
must either instantaneously transport the energy to the
base, as a melt rate, or it must immediately lose that
energy. Transport of temperate ice in a polythermal model
instead advects the generated liquid water downstream.
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Fig. 1. Schematic view of the two most commonly found thermal
structures: (a) Canadian type and (b) Scandinavian type. The dashed
line is the cold/temperate transition surface, a level set of the
enthalpy field.

This increases downstream basal melt rates, caused by
englacial drainage, in a physical way. Thus the more-
complete energy conservation by a polythermal model
improves the modeled distribution of basal melt both in
space and time. Significantly, fast ice flow is controlled by the
presence and time variability (Schoof, 2010) of pressurized
water at the ice base. Also, basal water can be transported
laterally and can refreeze at significant rates, especially over
highly variable bed topography (Bell and others, 2011), and
this process is best modeled polythermally.
One type of polythermal model decomposes the ice

domain into disjoint cold and temperate regions and solves
separate temperature and liquid water fraction equations
in these regions (Greve, 1997a). Stefan-type matching
conditions are applied at the cold/temperate transition
surface (CTS). The CTS is a free boundary in such models
and may be treated with front-tracking methods (Greve,
1997a; Nedjar, 2002). Because they require an explicit
representation of the CTS as a surface, however, such
methods are somewhat cumbersome to implement. Their
surface representation scheme may impose restrictions on
the shape (topology and geometry) of the CTS (e.g. when
Greve (1997a) describes the CTS by a single vertical
coordinate in each column of ice).
Enthalpy methods describe the CTS as a level set of the

enthalpy variable. No explicit surface-representation scheme
is required and no a priori restrictions apply to CTS shape.
Transitions between thermal structures caused by changing
climatic conditions can be modeled, even if nontrivial
CTS topology arises at intermediate stages. For example,
increasing surface energy input in the accumulation zone
could cause a transition from Canadian to Scandinavian
type through intermediate states involving temperate layers
sandwiching a cold layer.
A further practical advantage of enthalpy formulations,

among polythermal schemes, is that the state space of the
evolving ice sheet is simpler, because the energy state of
the ice fluid is described by a single scalar field. As we
will show, the enthalpy field also unifies the treatment of
conservation of energy for intra-, supra- and subglacial liquid
water. An apparently new basal water layer energy-balance
equation, a generalization of parameterizations appearing in

the literature, but including the effect of pressure variations
in subglacial water, arises from our analysis (Section 3.4).
Enthalpy methods are frequently used in computational

fluid dynamics (e.g. Meyer, 1973; Shamsundar and Sparrow,
1975; Furzeland, 1980; Voller and Cross, 1981;White, 1981;
Voller and others, 1987; Elliott, 1987; Nedjar, 2002) but
are newer to ice-sheet modeling. In geophysical problems,
enthalpy methods have been applied to magma dynamics
(Katz, 2008), permafrost (Marchenko and others, 2008),
shoreline movement in a sedimentary basin (Voller and
others, 2006) and sea ice (Bitz and Lipscomb, 1999; Huwald
and others, 2005; Notz and Worster, 2006).
Calvo and others (1999) derived a simplified variational

formulation of the enthalpy problem based on the shallow-
ice approximation on a flat bed and implemented it in
a flowline finite-element ice-sheet model. Aschwanden
and Blatter (2009) derived a mathematical model for
polythermal glaciers based on an enthalpy method. Their
model used a brine pocket parameterization scheme to
obtain a relationship between enthalpy, temperature and
liquid water fraction, but our theory here suggests no
such parameterization is needed. They demonstrated the
applicability of the model to Scandinavian-type thermal
structures. In the above studies, however, the flow is
not thermomechanically coupled, and instead a velocity
field is prescribed. Phillips and others (2010) proposed a
coupled and enthalpy-based, but highly simplified, two-
column ‘cryo-hydrologic’ model to calculate the potential
warming effect of liquid water stored at the end of the melt
season within englacial fractures.
The current paper derives an enthalpy formulation from

the fundamental principles of conservation of energy and
conservation of mass. It is organized as follows: enthalpy
is defined and its relationships to temperature and liquid
water fraction are determined by the use of mixture theory;
enthalpy-based continuum-mechanical balance equations
for mass and energy are stated, along with the necessary
constitutive equations; boundary conditions are carefully
addressed using the new technique described in the
Appendix. At this level of generality the enthalpy formulation
could be used in any ice flow model, but we describe
its implementation in the Parallel Ice Sheet Model (PISM;
C. Khroulev and others, http://www.pism-docs.org). PISM is
applied to the Greenland ice sheet, to compare the basal
melt and temperate ice distributions between cold-ice and
enthalpy-based models, and the results are discussed.

2. ENTHALPY FOR SOLID/LIQUID WATER
MIXTURES
Consider a mixture of ice and water with corresponding
partial densities ρi and ρw (mass of the component per unit
volume of the mixture). The mixture density is the sum

ρ = ρi + ρw. (1)

The liquid water fraction, often called water (moisture)
content, is the ratio

ω =
ρw
ρ
. (2)

Define the barycentric (mixture) velocity, v, by

ρv = ρivi + ρwvw, (3)
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where vi and vw are the velocity of ice and water, respectively
(Greve and Blatter, 2009). We use a Cartesian coordinate
system and denote v = (u, v ,w ).
We will treat the mixture of solid and liquid water as

incompressible, but of course the bulk densities of ice
(ρ̂i = 910kgm−3) and liquid water (ρ̂w = 1000kgm−3)
are distinct. However, for liquid water fractions smaller than
5%, as presumably applies to temperate ice in glaciers, the
change in mixture density due to changes in liquid water
fraction is <0.5%. It is therefore reasonable to set ρ ≈ ρ̂i.
We assume local thermodynamic equilibrium throughout

this paper. Thus the absolute temperature and internal energy
of the solid/liquid mixture are well defined, the latter up to
an additive constant.
The specific enthalpy is defined in some thermodynamics

literature (e.g. Moran and Shapiro, 2006) as H = U + p/ρ
where U is the specific internal energy and p is the pressure.
(NoteH andU have SI units J kg−1.) Relative to this literature,
in this paper ‘enthalpy’ is synonymous with ‘internal energy’,
H = U, because we do not include the work associated with
changing the volume, namely the p/ρ term in the specific
(per volume) case. That is, we use the name ‘enthalpy’
to match the use of ‘enthalpy’ and ‘enthalpy method’ in
other cryospheric applications (e.g. Notz and Worster, 2006;
Marchenko and others, 2008). Importantly in the glacier-
modeling context, our ‘enthalpy’ includes neither the (small)
kinetic energy density of the mixture nor its (significant)
gravitational potential energy density. The latter potential
energy reappears in the energy-balance equation as strain-
dissipation heating; cf. Eqn (20) below.
For cold ice the temperature, T , is below the pressure-

melting point, Tm(p). The specific enthalpy, Hi, of cold ice is
defined as

Hi =
∫ T

T0
Ci(T̃ ) dT̃ , (4)

where Ci(T ) is the measured heat capacity of ice (e.g. at
atmospheric pressure). As noted, this equation defines the
‘internal energy’ (e.g. eqn (4.38) of Greve and Blatter, 2009),
while other literature refers to it as ‘enthalpy’ (Notz and
Worster, 2006; Marchenko and others, 2008) or ‘relative
enthalpy’ (eqn (4.23) of Richet, 2001). If the reference
temperature, T0, is lower than all modeled ice temperatures
then enthalpy values will be positive, though positivity is
not important for correctness. The specific enthalpy of liquid
water, Hw, is defined as

Hw =
∫ Tm(p)

T0
Ci(T̃ ) dT̃ + L +

∫ T

Tm(p)
Cw(T̃ ) dT̃ , (5)

where Cw(T ) is the heat capacity of water and L is the latent
heat of fusion.
Functions Hi(T ) and Hw(T ,p) are defined by Eqns (4) and

(5), respectively, so that the enthalpy of liquid water exceeds
that of cold ice by at least L. Indeed, if T ≥ Tm(p) then
Hw(T , p) ≥ Hi(Tm(p)) + L. Supercooled liquid water with
T < Tm(p) is, however, allowed by Eqn (5).
Experiments suggest that the heat capacity, Ci(T ), of ice is

approximately a linear function of temperature in the range
of temperatures commonly found in glaciers and ice sheets
(Petrenko and Whitworth, 1999, and references therein). For
many glacier-modeling purposes it suffices to approximate
Ci(T ) by a constant value independent of temperature. The
heat capacity of liquid water, Cw(T ), is also nearly constant
within the relevant temperature range. Thus one may define

simpler functions Hi(T ) and Hw(T , p), but we will continue
with the general forms, given above, until Section 4.
The enthalpy density, ρH (volumetric enthalpy), of the

mixture is given by

ρH = ρiHi + ρwHw. (6)

From Eqns (1), (2), (4), (5) and (6),

H = H(T ,ω,p) = (1− ω)Hi(T ) + ωHw(T ,p). (7)

Equation (7) describes the specific enthalpy of mixtures,
including cold ice, temperate ice and liquid water.
In cold ice we have T < Tm(p) and ω = 0. Temperate

ice is a mixture which includes a positive amount of solid
ice. Neglecting the possibility of supercooled liquid in the
mixture, we have T = Tm(p) and 0 ≤ ω < 1 in temperate
ice. Denote the enthalpy of ω = 0 ice at the pressure-melting
temperature by

Hs(p) =
∫ Tm(p)

T0
Ci(T̃ ) dT̃ . (8)

For mixtures with a positive solid fraction, Eqn (7) now
reduces to two cases

H =
{
Hi(T ), T < Tm(p),

Hs(p) + ωL, T = Tm(p) and 0 ≤ ω < 1.
(9)

We now observe that an inverse function to Hi(T ) exists
under the reasonable assumption that Ci(T ) is positive. This
inverse is denoted Ti(H) and it is defined for H ≤ Hs(p).
Note ∂Hi/∂T = Ci(T ) and thus ∂T/∂Hi = Ci(T )−1. At this
point we can define ice as cold if a small change in enthalpy
leads to a change in temperature alone, and temperate if a
small change in enthalpy leads to a change in liquid water
fraction alone (Aschwanden and Blatter, 2005, 2009). The
following functions invert Eqn (7) for the range of enthalpy
values relevant to glacier and ice-sheet modeling:

T (H,p) =

{
Ti(H), H < Hs(p),

Tm(p), Hs(p) ≤ H,
(10)

ω(H, p) =

{
0, H < Hs(p),

L−1
(
H −Hs(p)

)
, Hs(p) ≤ H.

(11)

Schematic plots of temperature and water content as
functions of enthalpy are shown in Figure 2, with points
Hs and Hl(p) = Hw(Tm(p),p) = Hs(p) + L indicated.
Equations (10) and (11) will only be applied to cold or
temperate ice (mixtures), and therefore H < Hl(p) in all
cases.
By Eqns (10) and (11), if the pressure and enthalpy

are given then temperature and liquid water fraction
are determined. By Eqn (7), if the pressure, temperature
and liquid water fraction are given then the enthalpy
is determined. It follows that pressure and enthalpy are
preferred state variables in a thermomechanically coupled
glacier or ice-sheet flow model. From now on, temperature
and liquid water fraction are only diagnostically computed,
when needed, from this pair of state variables.



444 Aschwanden and others: An enthalpy formulation for glaciers and ice sheets

H

ωT

Hs Hl

Tm

1

Fig. 2. At fixed pressure, p, the temperature of the ice/liquid water
mixture is a function of enthalpy, T = T (H, p) (solid line), as is the
liquid water fraction, ω = ω(H,p) (dotted line). Points Hs(p) and
Hl(p) are the enthalpy of pure ice and pure liquid water, respectively,
at temperature Tm(p).

3. CONTINUUM MODEL
3.1. Balance equations
General balance equation
The balance of a quantity, ψ, describing particles (fluid)
which move with velocity v is given by

∂ψ

∂t
= −∇ · (ψv +φ) + π, (12)

where ψv andφ are the advective and the non-advective flux
density, respectively, and π is a production term (eqn (2.13)
of Liu, 2002).

Mass-balance equation
We only allow for the mass to be exchanged between the
solid and liquid components of the mixture (i.e. the phases)
by melting and freezing. Thus chemical creation of water is
not considered. DefineMw as the exchange rate between the
components, a production term in Eqn (12). Setting ψ = ρi,
v = vi, φ = 0 and π = −Mw in Eqn (12) for the ice
component, and similarly for the water component,

∂ρi
∂t

+∇ · (ρivi) = −Mw, (13)

∂ρw
∂t

+∇ · (ρwvw) = Mw. (14)

Adding Eqns (13) and (14) yields the balance for the mixture

∂ρ

∂t
+∇ · (ρv) = 0, (15)

where v is the barycentric velocity (Eqn (3)). However, as
noted above, the mixture density, ρ ≈ ρ̂i, is approximately
constant. Exact constancy of the density would imply that
the mixture is actually incompressible,

∇ · v = 0. (16)

We have already accepted the constant density approxima-
tion, so we adopt Eqn (16), incompressibility, as the mass-
conservation equation for the mixture.

Enthalpy-balance and evolution equation
Within the mixture, Σw is the enthalpy exchange rate
between the components. The advective and non-advective
enthalpy fluxes of the ice component are given by ρiHiv
and qi, respectively, and by ρwHwv and qw in the liquid.
(Here ‘non-advective’ simply means not proportional to the
barycentric velocity, v.) There are also dissipation heating
rates, Qw and Qi, for the components, but we will only

give an equation for the mixture heating rate, Q = Qw +
Qi (Eqn (21), below). The enthalpy balance for the ice
component then reads

∂ (ρiHi)
∂t

= −∇ · (ρiHiv + qi)+Qi − Σw, (17)

and similarly for the liquid component,

∂ (ρwHw)
∂t

= −∇ · (ρwHwv + qw)+Qw + Σw. (18)

The smoothness of the modeled enthalpy fields, ρiHi and
ρwHw, is closely related to the empirical form chosen for the
non-advective enthalpy fluxes, qi and qw. Differentiability
of the enthalpy field for a mixture component follows from
the presence of diffusive terms in the corresponding non-
advective flux. While we assume that the enthalpy solution
is spatially differentiable, its derivatives may be large in
magnitude, corresponding to enthalpy ‘jumps’ in practice.
Summing Eqns (17) and (18), and using Eqn (6), gives a

balance for the total enthalpy flux:

∂(ρH)
∂t

= −∇ · (ρHv + qi + qw)+Q . (19)

Setting q = qi + qw, using notation d/dt = ∂/∂t + v · ∇ for
the material derivative, and recalling incompressibility,

ρ
dH
dt

= −∇ · q+Q (20)

for the mixture. The rate, Q , at which dissipation of strain
releases heat into the mixture is

Q = tr
(
D · TD

)
(21)

whereD is the strain-rate tensor and TD is the deviatoric stress
tensor (Greve and Blatter, 2009). (Note that momentum-
(stress-) balance equations for ice are topics beyond the
scope of this paper. In practice, solving the momentum
balance in an ice flow computes the velocity, v, pressure, p,
strain rates,D, and deviatoric stresses, TD, from ice geometry,
softness and boundary stresses. Thus the momentum balance
supplies needed fields to the mass and energy balances.)
Equation (20) is our primary statement of conservation of

energy for ice. It has the same form as the temperature-only
equations already implemented in many cold-ice glacier
and ice-sheet models. The complete set of field equations
for an enthalpy formulation consists of balance (Eqn (20)),
heat source (Eqn (21)), incompressibility (Eqn (16)) and the
unstated momentum-balance equation, which may be quite
general. Additionally, constitutive equations for the non-
advective enthalpy fluxes, qw and qi, and for the viscosity
of ice are needed. These are addressed in Section 4.

3.2. On jump equations at boundaries
The mixture mass density, ρ, and mixture enthalpy density,
ρH, are well defined in the ice as well as in the air and
bedrock, where we assume they have value zero. That is,
the air and bedrock are assumed to be water-free in our
simplified view, as depicted in Figure 3. The density fields
satisfy the stated field equations within the ice, but we now
consider their jumps at the upper ice surface and ice base,
because they are not continuous at those surfaces. These
jump equations then provide boundary conditions for a well-
posed conservation-of-energy problem for the ice.
At a general level, suppose that a smooth, non-material,

singular surface, σ, separates a region, V , into two subregions
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V±, (Fig. 9 in Appendix). Let n be the unit normal field on σ,
pointing from V− to V+. The jump, [[ψ]], of a (scalar) field
ψ on σ is defined as

[[ψ]] = ψ+ − ψ−, (22)

where ψ± are the one-sided limits of ψ in V±.
Now we allow advection of ψ at some velocity, vσ, within

and along (tangent to) σ, and we suppose that ψ has area
density λσ on σ. (For example, the area density, λσ, in
the mass-balance application in Section 3.3 is the mass per
unit area of liquid water in the supraglacial layer.) We also
allow production of ψ in the surface, σ, at rate πσ. (In the
same example, πσ includes the rainfall mass accumulation
rate into the layer.) As shown in the Appendix by a pillbox
argument, general balance, Eqn (12), implies a transport-
generalized jump condition:

[[ψ(v · n−wσ)]] + [[φ · n]] + ∂λσ

∂t
+∇ · (λσvσ) = πσ. (23)

Here wσ is the normal speed of the surface. Equation (23),
which is not in the literature to our knowledge, generalizes
the better-known Rankine–Hugoniot jump condition (Liu,
2002). Merely stating jump equations, such as Eqn (23), does
not ‘close’ the continuum model. Specific descriptions of
processes in the thin active layer are still needed, namely
supraglacial runoff and subglacial hydrology models in the
context of this paper (Section 4.7).
Equation (23) arises as a large-scale approximation of

the balance of processes occurring in a thin ‘active’ layer
(e.g. of a few meters thickness), confined around the ideal
boundary surface, σ, and bounded on either side by three-
dimensional (3-D) fluids. Thus, Eqn (23) is both a jump
condition describing the 3-D field,ψ, and a balance equation
for the field, λσ, within the boundary surface. In the latter
view the first two jump terms in Eqn (23) are production
terms, with the source being the adjacent 3-D field. The
density ofψmay also vanish in a portion of the layer (λσ = 0),
so that Eqn (23) reverts locally to a pure jump equation for ψ.
In glaciological modeling the velocity, vσ, of the thin layer
material (e.g. the velocity of liquid water in the supraglacial
layer, if present) may be much larger than the 3-D ice mixture
velocity, v.
We identify the ice side of boundary surfaces as positive

(i.e. as V+) throughout this paper. If ψ is zero on the negative
(V−) side of the surface, σ, as it is in the applications in the
next two subsections, and if we suppress the ‘+’ superscript
for positive-side quantities, Eqn (23) becomes

ψ (v · n−wσ)+ (φ−φ−) ·n+ ∂λσ

∂t
+∇· (λσvσ) = πσ. (24)

In the next two subsections we describe both a supraglacial
runoff layer and subglacial hydrology layer within this
continuum framework. These layers are each governed by a
pair of jump equations for the fields ρ and ρH. The analogy
between these two layers is deliberate.

3.3. Upper surface
Jump equation for mass
The ice upper surface, σ = {z = h(t , x, y )}, is where the
mixture density, ρ, jumps from zero in the air to ρ̂i in the ice
(Fig. 3). Define

N2h = 1 +
(
∂h
∂x

)2
+
(
∂h
∂y

)2
= 1 + |∇h|2, (25)

air
(ρ = 0, ρH = 0)

ice
(ρ = ρw + ρi, ρH = ρwHw + ρiHi)

bedrock
(ρ = 0, ρH = 0)

n

n

Fig. 3. Jump condition, Eqn (24), is applied to fields ρ and ρH, the
mass and enthalpy densities of the ice/liquid water mixture. These
fields are defined in air, ice and bedrock. They undergo jumps at the
ice upper surface (z = h) and the ice base (z = b). By convention,
the normal vector, n, points into the ice domain.

so that a unit normal vector for σ pointing from air (V−) into
ice (V+) is

n = N−1h

(
∂h
∂x
,
∂h
∂y
,−1

)
= N−1h

(∇h,−1) . (26)

The normal surface speed is

wσ =
(
0, 0,

∂h
∂t

)
· n = −N−1h

∂h
∂t

. (27)

Consider the solid mixture component at the upper
surface. Wemake the simplifying assumption that only liquid
runoff is mobile in the thin layer at the upper surface, so
λσ = 0 and vσ = 0. Ice accumulates perpendicularly
at a mass flux rate, a⊥i (kgm−2 s−1); this is snow minus
sublimation. Ice also forms at a rate, μ, from freezing of the
liquid which is already present in the thin layer, σ. Let ψ = ρi,
φ = 0, v = (mixture velocity), λσ = 0 and πσ = μ + a⊥i in
Eqn (24):

ρi (v · n−wσ) = μ+ a⊥i . (28)

For the liquid component define λσ = ρ̂wηh , where ηh is
the effective meltwater layer thickness. Let vσ = vh be the
runoff velocity, where vh = 0 if the surface layer meltwater is
not moving. Let a⊥w be the rainfall mass rate; we account for
any liquid fraction in snowfall as part of this rate. Choosing
ψ = ρw, φ = 0 and πσ = −μ+ a⊥w in Eqn (24):

ρw (v · n−wσ)+
∂(ρ̂wηh )

∂t
+∇· (ρ̂wηhvh) = −μ+ a⊥w . (29)

The sum, a⊥ = a⊥i +a
⊥
w , is the mixture accumulation func-

tion, the mass rate for exchange with the atmosphere. Define
the (meltwater-storage-modified) surface mass balance

Mh ≡ a⊥ − ∂(ρ̂wηh )
∂t

−∇ · (ρ̂wηhvh) (30)

(SI units kgm−2 s−1). The ice velocity, v, and the mass
balance, Mh , combine to determine the rate of movement,
wσ, of the ice surface. Indeed, adding Eqns (28) and (29)
and using the definition of Mh (Eqn (30)) gives the surface
kinematic equation:

ρ (v · n−wσ) = Mh. (31)

Multiplying through by ρ−1Nh and using Eqns (26) and (27)
gives the equivalent, more familiar form of Eqn (31):

∂h
∂t
+ u

∂h
∂x

+ v
∂h
∂y

−w = ρ−1NhMh. (32)

The right-hand side is the ice-thickness-equivalent surface
mass-balance rate (SI units m s−1).
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Equation (31) describes the jump of ice mixture density,
ρ, from air into incompressible ice, generically across a
thin layer which may hold surface meltwater (e.g. firn with
meltwater or surface ponds on bare ice). Our enthalpy
formulation includes the meltwater thickness, ηh , held in this
layer, as a state variable. Models which describe a firn layer
explicitly could replace Eqn (31) by separate kinematical
equations for atmosphere/firn surface and a firn/ice surface
below it, in which case ηh could describe the meltwater
thickness held within the firn.

Jump equation for enthalpy
Snow and rain deliver enthalpy to the ice surface. In general,
enthalpy is transported along the surface as well. Enthalpy
is also delivered through non-latent atmospheric fluxes
(sensible, turbulent and radiative) whose sum we denote
qatm. These all affect the jump in the enthalpy density, ρH,
as we go from air into ice. Note H is not defined in the air,
but ρH has value zero in the air because ρ = 0 there.
For the ice component we assume snowfall occurs at

a prescribed temperature, Tsnow, which varies in time and
space, with corresponding enthalpy, Hsnowi = Hi(Tsnow). We
denote the enthalpy exchange rate for ice formed by freezing
of meltwater as Σ (Jm−2 s−1). Again we make the simplifying
assumption that λσ = 0 for the solid component; only
liquid is mobile at the surface. Equation (24) with ψ = ρiHi,
φ = (1−ω)q, φ− = (1−ω)qatm and πσ = Σ+ a⊥i Hi(Tsnow),
and with other symbols defined as for Eqn (28), gives

ρiHi (v · n−wσ)+(1−ω)
(
q− qatm)·n = Σ+a⊥i Hsnowi . (33)

For the liquid component we make the simplifying
assumptions that surface meltwater is at the melting
temperature and that variations in atmospheric pressure
can be ignored in describing the enthalpy of this surface
meltwater. Let Train be the temperature of the rainfall, and
define Hrainw = Hw(Train, patm); see Eqn (5). Let Hatml =
Hl(patm) = Hs(patm) + L be the enthalpy of the surface
meltwater, a constant. With φ = ωq, φ− = ωqatm, λσ =
ρ̂wηhH

atm
l and πσ = −Σ + a⊥wHatml in Eqn (24), we have

ρwHw (v · n−wσ) + ω
(
q− qatm)· n+ ∂

(
ρ̂wηhH

atm
l

)
∂t

+∇·(ρ̂wηhHatml vh
)
=− Σ + a⊥wHrainw .

(34)

Adding the last two equations gives an enthalpy boundary
condition for the mixture:

ρH (v · n−wσ) +
(
q− qatm) · n = a⊥i Hsnowi

+ a⊥wH
rain
w − ∂

(
ρ̂wηhH

atm
l

)
∂t

−∇ · (ρ̂wηhHatml vh
)
.

(35)

Using Eqns (30) and (31) to simplify Eqn (35), with Hatml
factored out of derivatives, the result is a balance for energy
fluxes at the ice (mixture) upper surface:

Mh (H −Hatml ) +
(
q− qatm) · n

= a⊥i
(
Hsnowi −Hatml

)
+ a⊥w

(
Hrainw −Hatml

)
.

(36)

Equation (36) is the surface energy-balance equation
written for use as the boundary condition for the enthalpy-
balance equation in an ice-sheet model. It is true at each
instant, but its yearly averages may be more easily modeled
in practice. Two restricted cases of Eqn (36), which the reader
may find more familiar, are addressed next.

First, in areas where there is no surface meltwater (ηh = 0
so Mh = a

⊥ by Eqn (30)), and assuming that rainfall occurs
at the pressure-melting temperature (Hrainw = Hatml ), and
neglecting the typically small conductive heat flux into the
ice (q · n = 0), then Eqn (36) is a Dirichlet condition for
enthalpy:

H =
(
a⊥i
a⊥

)
Hsnowi +

(
a⊥w
a⊥

)
Hatml +

qatm · n
a⊥

. (37)

This equation says the surface value of the ice mixture
enthalpy is the mass-rate-averaged enthalpy delivered by
precipitation, plus other (non-latent) atmospheric energy
fluxes. If we do not make the q · n = 0 approximation, and
instead use a model for conductive heat flux in the ice, such
as Eqn (61) (Section 4.1), then Eqn (37) becomes a Robin
boundary condition for the enthalpy-balance equation.
A second case, that of periods with no accumulation

(a⊥i = 0 and a⊥w = 0), gives a rather different equation. We
can use Eqn (30) to rewrite Eqn (36) as[
∂(ρ̂wηh )

∂t
+∇·(ρ̂wηhvh)

]
(H−Hatml ) =

(
q− qatm)·n. (38)

That is, the difference between downward-into-the-ice
conductive flux, q · n, and the non-latent atmospheric
energy fluxes, qatm · n, is balanced by meltwater storage and
transport.
If we use a model for conductive heat flux in the ice,

such as Eqn (61), then both Eqn (38) and the general form
(Eqn (36)) are Robin boundary conditions for the enthalpy-
balance equation, but we must generally have a model for
storage and transport of meltwater (i.e. a dynamical model
for ηh = ηh (t , x, y )) to use them this way. For much of the year
there is no liquid water at the surface of a glacier (ηh = 0),
in which case Eqn (38) merely says there is a balance of
non-latent fluxes (q · n = qatm · n), a Neumann condition for
the enthalpy-balance equation if we have Eqn (61). During
periods of intense melt, or in areas with runoff ponding,
for example, we must use Eqn (38) or the general form
(Eqn (36)). However, if the accumulation is regarded as
occurring steadily over longer periods (e.g. months), and if
there is minimal meltwater in the surface layer, then Eqn (37)
is likely to be a better model. The general form (Eqn (36)) is
presumably best if the model has sufficient complexity.
Our analysis does not include the energy released by

viscous strain-dissipation heating by flow of the liquid runoff
itself. Also we have not included the energy released by
firn compaction. Improved models of these processes could
add production terms to either or both of the component
balances, Eqns (33) and (34), with resulting modifications to
Eqn (36).

3.4. Ice base
Jump equation for mass
The analysis of the basal layer is similar to the meltwater
layer at the upper surface. At the base, pressure, frictional
heating and geothermal flux play new roles. However, at the
ice base we make the simplifying assumption that there is
no mass accumulation from sources outside the ice sheet or
its subglacial layer. Thus all liquid in this layer originates
from melting of the ice above, or from transport in the
layer. For simplicity, we suppose that only pressure-melting-
temperature liquid water may move in the layer.
In Eqn (40), below, we parameterize the subglacial aquifer

by an effective layer thickness, ηb , and an effective subglacial
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liquid velocity, vb . When the ice basal temperature is below
the pressure-melting point then we assume ηb = 0 and
vb = 0. We assume this aquifer has a liquid pressure, pb ,
called the ‘pore-water pressure’, as if the liquid is in the pore
spaces of a permeable till. This pressure does not need to be
defined where ηb = 0. All fields, ηb , vb ,pb , may vary in time
and space.
Our general enthalpy formulation does not include a

specific hydrological model ‘closure’. Such a closure would
relate the flux, ηbvb , to the pressure, pb , as in Darcy flow,
for example (cf. Clarke, 2005). Such a closure is needed to
build an effective glacier model. See Section 5.1 for a simple
example closure.
Assuming the base, σ = {z=b(t , x, y )}, is a differentiable

surface, defineN2b = 1+|∇b|2 and n = N−1b (−∇b,+1). The
surface (unit) normal vector, n, points from bedrock (V−)
into ice (V+). The normal surface speed of the ice base is
wσ = N−1b (∂b/∂t ).
For the mass balance of the ice component, let ψ = ρi,

φ = 0, λσ = 0 and πσ = μ in Eqn (24), where μ is the mass
exchange rate between the liquid and the solid phase:

ρi (v · n−wσ) = μ. (39)

Similarly for the liquid component, let ψ = ρw, φ = 0,
λσ = ρ̂wηb , vσ = vb and πσ = −μ in Eqn (24), where ηb
is the basal water layer thickness and vb is the basal water
velocity:

ρw (v · n−wσ) +
∂
(
ρ̂wηb

)
∂t

+∇ · (ρ̂wηbvb) = −μ. (40)

Define the ice base mass-balance rate

Mb ≡ −∂
(
ρ̂wηb

)
∂t

−∇ · (ρ̂wηbvb) (41)

(SI units kgm−2 s−1). This quantity is analogous to the
meltwater-storage-modified surface mass balance, Mh , de-
fined in Eqn (30), but at the ice base there is no accumulation
from external supply. The negative of Mb is called the basal
melt rate. This is the rate at which hydrological storage and
transport mechanisms deliver liquid water to the base of
the ice at a subglacial location. Equation (41) occurs in the
literature (e.g. eqn (4) of Johnson and Fastook, 2002).
Adding Eqns (39) and (40) gives a basal kinematic

equation, ρ(v · n − wσ) = Mb . Using the expressions for
n and wσ , and multiplying through by ρ−1Nb gives the more
familiar form:

∂b
∂t
+ u

∂b
∂x

+ v
∂b
∂y

−w = −ρ−1NbMb . (42)

Jump equation for enthalpy
The ice mixture enthalpy density, ρH, jumps from zero in
the bedrock to its value in the ice. That is, for simplicity
we do not track the latent energy content of water deep
within the bedrock (aquifers or permafrost below a thin,
active subglacial layer).
Heat is supplied to the subglacial layer by the geothermal

(lithospheric) flux, qlith. The stress applied by the lithosphere
to the base of the ice is f = −T · n, where T is the Cauchy
stress tensor, with shear component τ b = f − (f · n)n (‘shear
traction’, Liu, 2002). Therefore the frictional heating arising
from sliding is Fb = −τ b · v, a positive surface flux, if v is
the velocity of the ice.
Let Σ be the enthalpy density exchange rate between ice

and liquid components in the subglacial layer. For the energy

balance of the ice component, substitution of ψ = ρiHi,
φ+ = (1 − ω)q, φ− = (1 − ω)qlith, λσ = 0 and πσ =
Σ+ (1− ω)Fb in Eqn (24) yields

ρiHi (v · n−wσ)+(1−ω)
(
q− qlith

)·n = Σ+(1−ω)Fb. (43)

For the water component we use analogous choices to those
in Eqn (40): substitute ψ = ρwHw, φ+ = ωq, φ− = ωqlith,
λσ = ρ̂wHl(pb )ηb , vσ = vb and πσ = −Σ + ωFb in Eqn (24).
This gives

ρwHw (v · n−wσ) + ω
(
q− qlith

) · n+ ∂(ρ̂wHl(pb )ηb )
∂t

+∇ · (ρ̂wHl(pb )ηbvb) = −Σ + ωFb .
(44)

Equations (43) and (44) have terms (e.g. ‘(1 − ω)q’,
‘(1 − ω)Fb ’, ‘ωq’ and ‘ωFb ’) for heating in each component
separately. This is only a representative distribution between
the phases, because Eqn (47), for the mixture, is used in
modeling, and not Eqns (43) or (44) directly. We have
included such a distribution of heat to the components so
as to clarify the derivation of Eqn (47), below. Similar to
Eqn (41), we now define

Qb ≡ −∂
(
ρ̂wHl(pb )ηb

)
∂t

−∇ · (ρ̂wHl(pb )ηbvb) . (45)

This is the rate at which hydrological storage and transport
mechanisms deliver latent heat to the base of the ice at a
subglacial location. (For example, if the basal water layer
grows in thickness but the water is not flowing laterally, that
is if ∂/∂t > 0 in Eqn (45) but the divergence portion is zero
because vb is zero, then Qb is negative because enthalpy
is being removed from the base of the glacier for delivery
to the subglacial liquid.) Adding component Eqns (43) and
(44), and applying the definition of Mh (Eqn (45)) gives

ρH (v · n−wσ) +
(
q− qlith

) · n = Fb +Qb . (46)

Recalling the basal kinematic equation (42) in its simplified
form, ρ(v · n−wσ) = Mb , we may rewrite Eqn (46) as

MbH = Fb +Qb −
(
q− qlith

) · n. (47)

The ‘H’ on the left-hand side of Eqn (47) is the value of the
enthalpy of the ice mixture at its base, which is generally
different from the enthalpy of the subglacial liquid water
(= Hl(pb ), as in Eqn (45)).
Liquid water that is transported in the subglacial aquifer

can undergo phase change merely because of changes in
the pressure-melting temperature in this water (section 4.1.1
of Clarke, 2005). This situation is addressed by Eqn (47)
through the role of pb in Qb (Eqn (45)). Conversely, the
pressure in the subglacial aquifer can be altered because
of energy fluxes into, and within, the subglacial aquifer. In
other words, Eqn (47) can be rewritten as a partial differential
equation for the subglacial liquid water pressure. Indeed,
from Eqns (41) and (45), with dpb/dt = ∂pb/∂t + vb · ∇pb
and γ = ∂Hl(pb )/∂pb , we can eliminate Qb from Eqn (47)
to get

ρ̂wηbγ
dpb
dt

= Fb −Mb
(
H −Hl(pb )

)− (
q− qlith

) · n. (48)
Equation (48) describes how pore-water pressure changes,
dpb/dt , are related to energy fluxes into the subglacial layer.
It does not, however, fully determine such changes without
a closure, a connection between ηb and pb .
We define a point in the basal surface, σ = {z = b}, to be

‘cold’ if H < Hs(p) and ηb = 0, and ‘temperate’ otherwise.
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If all points of a portion of σ are cold then Eqn (41) implies
Mb = 0 and Eqn (45) implies Qb = 0, so Eqn (47) then says

q · n = qlith · n+ Fb . (49)

Thus, the heat entering the base of the ice mixture combines
geothermal and frictional heating. In fact, Eqn (49) is the
standard heat flux boundary condition for the base of cold
ice, including ‘hard bed’ sliding (Clarke, 2005). It is a
Neumann boundary condition if we adopt a conductive flux
model for ice, such as Eqn (61) (Section 4.1).
The subglacial aquifer is subject to the obvious positive-

thickness inequality, ηb ≥ 0. If the ice base is temperate
then the ηb = 0 situation is unstable, however. In fact
Eqn (47) implies that any heat imbalance, however slight,
can immediately generate a nonzero melt rate if the basal
temperature is at the pressure-melting value. By the definition
of ‘cold’ base just given, the temperate base case is where
either H ≥ Hs(p) or ηb > 0. This case simplifies to ‘H ≥
Hs(p) and ηb ≥ 0’ if the subglacial liquid is assumed to be
at the pressure-melting temperature (not supercooled). That
is, if ηb > 0 then heat will move so that the base of the ice
mixture has H ≥ Hs(p).
The temperate base case permits the interpretation of

Eqn (47) as a basal melt rate calculation. The basal melt
rate itself (−Mb ) can be either positive (melting) or negative
(subglacial liquid freezes onto the base of the ice). From
Eqn (48) we can also write the basal melt rate in terms of
heat fluxes and changes in the pore-water pressure (dpb/dt ):

−Mb =
Fb −

(
q− qlith

) · n− ρ̂wηbγ
(
dpb/dt

)
Hl(pb )−H

. (50)

Similar to the supraglacial runoff layer, energy production
due to strain-dissipation heating within the subglacial aquifer
is not included (Section 3.3). Another possibility, also not
addressed in this paper, is that liquid water could enter the
thin subglacial layer from aquifers deeper in the bedrock
(cf. eqn (9.123) of Greve and Blatter, 2009). The possibility
that the subglacial aquifer could be connected directly to
the supraglacial runoff layer by moulin drainage is not
modeled either. Finally, we have not attempted to model
sediment transport.

4. SIMPLIFIED THEORY INCLUDING
CONSTITUTIVE RELATIONS
The mathematical model derived in the previous sections
is general enough to apply to a wide range of numerical
glacier and ice-sheet models. It is neither limited to a
particular stress balance nor a particular numerical scheme.
In this section, however, we propose constitutive equations,
simplified parameterizations and shallow approximations
which make an enthalpy formulation better suited to current
modeling practice.

4.1. Constitutive equations
Enthalpy flux
The non-advective heat flux in cold ice, namely that flux
which is not advective at the mixture velocity, is given by
Fourier’s law (e.g. Paterson, 1994),

qi = −ki(T )∇T , (51)

where ki(T ) is the thermal conductivity of cold ice.
Combining Eqns (10) and (51) allows us to write the heat

flux in terms of the enthalpy gradient in cold ice,

qi = −ki(T )∇ (Ti(H)) = −ki(T )Ci(T )−1∇H. (52)

The last expression in Eqn (52) is written in terms of enthalpy,
a key step in an enthalpy-gradient method (Pham, 1995;
Aschwanden and Blatter, 2009). In fact, let

Ci(H) = Ci (Ti(H)) and ki(H) = ki(Ti(H)), (53)

thus

Ki(H) = ki(H)Ci(H)
−1. (54)

Fourier’s law for cold ice now has the enthalpy form

qi = −Ki(H)∇H. (55)

The non-advective heat flux in temperate ice is the sum of
sensible and latent heat fluxes (Greve, 1997a),

q = qs + ql. (56)

The sensible heat flux, qs, in temperate ice is conductive,
arising from variations in the pressure-melting temperature.
The mixture conductivity, written in terms of enthalpy and
pressure, is

k (H, p) =
(
1− ω(H, p)

)
ki(H) + ω(H,p) kw, (57)

where kw is the thermal conductivity of liquid water (cf.
eqn (3) of Notz and Worster, 2006). By Fourier’s law the
sensible heat flux has enthalpy form

qs = −k (H, p)∇Tm(p). (58)

The latent heat flux, ql, in temperate ice is proportional to
the mass flux of liquid water, j, relative to the barycenter:

ql = Lj = Lρw (vw − v) . (59)

Flux j is sometimes called the ‘diffusive water flux’ (Greve
and Blatter, 2009), but we prefer to identify it as ‘non-
advective’ until a diffusive constitutive relation is specified.
A constitutive equation for j is required for implementability;
however, Hutter (1982) suggested a general formulation, in-
volving liquid water fraction, its spatial gradient, deformation
and gravity. Two specific realizations have been proposed,
a Fick-type diffusion (Hutter, 1982) and a Darcy-type flow
(Fowler, 1984). However, laboratory experiments and field
observations to identify the constitutive relation are scarce.
A drop in liquid water fraction was observed close to the bed
at Falljökull in Iceland (Murray and others, 2000) and on the
upper plateau of the Vallée Blanche in the massif du Mont-
Blanc (Vallon and others, 1976), and these observations
suggest a gravity-driven flow regime may exist at higher
water fractions. They support the flexible Hutter (1982) form.
But we admit that even the functional form of ql is poorly

constrained at the present state of experimental knowledge.
Greve (1997a) writes the simplest possible form by setting the
latent heat flux, ql, to zero in temperate ice. Our assumption
that the enthalpy field has finite spatial derivatives within the
ice explains our regularizing choice instead, namely

ql = −k0∇ω = −K0∇H, (60)

where k0 and K0 = L−1k0 are small positive constants. This
form may be justified by a Fick-type diffusion (Hutter, 1982),
or even by observing that numerical schemes approximating
the hyperbolic equation arising from the choice ql =
0 will automatically generate some numerical diffusion
(Greve, 1997a). Mathematically, this regularization makes
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the enthalpy field, Eqn (67), coercive, which explains why
the same regularization was used by Calvo and others (1999).
From Eqns (55), (56), (58) and (60), we have now expressed

the heat flux in terms of enthalpy and pressure,

q =

{
−Ki(H)∇H, cold,

−k (H, p)∇Tm(p)− K0∇H, temperate.
(61)

Ice flow
Laboratory experiments suggest that glacier ice behaves like
a power-law fluid (e.g. Steinemann, 1954; Glen, 1955), so
its effective viscosity, η, is a function of an effective stress,
τe, a rate factor (softness), A, and a power, n,

2η = A−1
(
τ2e + ε2

)(1−n)/2
. (62)

The small constant, ε (units of stress), regularizes the flow
law at low effective stress, avoiding the problem of infinite
viscosity at zero deviatoric stress (Hutter, 1983).
In terrestrial glacier applications, ice behaves similarly to

metals and alloys with a homologous temperature near 1.
In cold ice it is common to express the rate factor with the
Arrhenius law,

Ac(T , p) = A0e
(−Qa+pV )/RT , (63)

where A0,Qa,V and R are constant (or have additional
temperature dependence; Paterson, 1994). For temperate ice,
however, little is known about the effect of liquid water on
viscosity. In experimental studies, Duval (1977) and Lliboutry
and Duval (1985) derived the following function for the rate
factor in temperate ice, At(ω,p), valid for water fractions
<0.01 (or 1%),

At(ω,p) = Ac
(
Tm(p),p

)
(1 + 181.25ω) , (64)

as given by Greve and Blatter (2009). In any case we may
write the rate factor as a function of the enthalpy variable
and pressure using the functions defined in Eqns (63) and
(64):

A(H,p) =

{
Ac(T (H,p), p), H < Hs(p),

At(ω(H, p),p), Hs(p) ≤ H < Hl(p).
(65)

Subglacial water pressure
A commonly adopted simplified view neglects pressure
variation in time when determining the subglacial liquid
enthalpy (i.e. dpb/dt = 0). It also assumes that the basal
pressure, p, of the ice mixture is at the same value. In fact,
for this paragraph let p0 be the common pressure both of
the subglacial liquid and of the basal ice, and assume it
is constant in time and space. Assuming the basal ice is
temperate because subglacial liquid is present, the basal ice
mixture enthalpy is then H = Hs(p0)+ωL and the subglacial
liquid enthalpy is Hl(p0) = Hs(p0) + L. By constancy of the
pressure, Eqns (41) and (45) imply Qb = Hl(p0)Mb , and
Eqn (47) says that

−Mb =
Fb −

(
q− qlith

) · n
(1− ω)L

. (66)

Equation (66) appears inmany places in the literature, though
the constant-pressure assumption is rarely made explicit. For
example, it matches eqn (5.40) of Greve and Blatter (2009)
in the case ω = 0 (noting a substitution ‘−Mb = ρa⊥b ’ and
a change in sign of the normal vector, n). Similar notational
changes give eqn (5) of Clarke (2005). However, we believe

that Eqn (47) (and its equivalent forms, Eqns (48) and (50)) is
more fundamental, or at least more energy-conserving, than
Eqn (66), as it applies even in cases with variable subglacial
aquifer pressure, pb .

4.2. Field equation for enthalpy
Inserting Eqn (61) into Eqn (20) yields the enthalpy field
equation of the ice mixture, the conduction term of which
depends on whether the mixture is cold (H < Hs(p)) or
temperate (H ≥ Hs(p)):

ρ
dH
dt

= ∇ ·
({

Ki(H)∇H
k (H, p)∇Tm(p) + K0∇H

})
+Q . (67)

4.3. Hydrostatic simplifications
The pressure, p, of the ice mixture appears in all relationships
between enthalpy, temperature and liquid water fraction
(Section 2). Simplified forms apply in flow models which
make the hydrostatic pressure approximation (Greve and
Blatter, 2009)

p = ρg (h − z). (68)

Recall also the Clausius–Clapeyron relation

∂Tm(p)
∂p

= −β, (69)

where β is constant (Lliboutry, 1971; Harrison, 1972). In this
subsection we derive consequences of Eqns (68) and (69).
Within temperate ice the sensible heat flux term in

enthalpy field Eqn (67) is transformed:

∇·(k∇Tm(p) + K0∇H)
= −β∇·(k∇p) +∇·(K0∇H)

= −βρg
[
∇·(k∇h)− ∂k

∂z

]
+∇·(K0∇H).

(70)

Recall that k = k (H, p) varies within temperate ice while K0
is constant (Section 4.1). For small values of the liquid water
fraction (cf. Section 4.6), a further simplification identifies
the mixture thermal conductivity with the constant thermal
conductivity of ice,

k (H, p) = (1− ω)ki + ωkw ≈ ki (71)

(cf. Eqn (57)). In temperate ice the enthalpy flux divergence
term then combines an essentially geometric additive factor,
proportional to the Laplacian, ∇2h, and thus related to the
curvature of the ice surface, with a small (true) diffusivity for
K0 > 0, as follows:

∇ · (k∇Tm(p) + K0∇H)
= −βρgki∇2h+∇· (K0∇H). (72)

Defining Γ = −βρgki∇2h, enthalpy field Eqn (67), again
with cases for cold and temperate ice, simplifies to:

ρ
dH
dt

= ∇ ·
({

Ki(H)

K0

}
∇H

)
+

{
0

Γ

}
+Q . (73)

The geometric factor, Γ, can be understood physically
as a differential heating or cooling rate of a column of
temperate ice by its neighboring columns with differing
surface heights. It represents a small contribution to
the overall heating rate, however, especially relative to
dissipation heating, Q (Aschwanden and Blatter, 2005). In
terms of typical values, with a strain rate 10−3 a−1 and
a deviatoric stress 105 Pa (Paterson, 1994) we have Q ≈
3 × 10−6 Jm−3 s−1. Furthermore, if the ice upper surface
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Fig. 4. An example finite drainage function.

changes slope by 0.001 in horizontal distance 1 km then
|∇2h| ≈ 10−6 m−1. Using the constants from Table 1, below,
we have |Γ| ≈ 2×10−9 Jm−3 s−1, three orders of magnitude
smaller than Q . Of course, ∇2h does not really have a
‘typical value’ because, even in the simplest models, it has
unbounded magnitude at ice-sheet divides (section 5.6 of
Greve and Blatter, 2009) and margins (Bueler and others,
2005). Examination of a typical digital elevation model for
Greenland suggests |∇2h| < 10−6 m−1 for >95% of the
area, however. For these reasons we implement the simplest
model in Section 5.1, i.e. Γ = 0 in Eqn (73).
Regardless of the magnitude of Γ, Eqn (73) is parabolic

in the mathematical sense. That is, its highest-order spatial
derivative term is uniformly elliptic (Ockendon and others,
2003). We expect that min{Ki(H),K0} = K0, and we assume
a positive minimum value of the conductivity coefficient in
Eqn (73) (i.e. ‘coercivity’; Calvo and others, 1999). It follows
that the initial/boundary-value problem formed by Eqn (73),
along with boundary conditions which are of mixed Dirichlet
and Neumann type (Section 4.7), is well posed (Ockendon
and others, 2003). Equation (73) is strongly advection-
dominated, however, and numerical schemes should be
constructed accordingly.

4.4. Shallow enthalpy equation
In addition to hydrostatic approximation, some ice-sheet
models use the small aspect ratio of ice sheets to simplify
their model equations. Heat conduction can be shown to be
negligible in horizontal directions in such models (Greve and
Blatter, 2009). With this simplification, and taking Γ = 0 for
the reasons above, Eqn (73) becomes

ρ
dH
dt

=
∂

∂z

({
Ki(H)

K0

}
∂H
∂z

)
+Q , (74)

where the first case is used when H < Hs(p) and the
second case when H ≥ Hs(p). Equation (74) is used in
the PISM implementation in Section 5. One may consider
the further simplification that Ki(H) = Ki is constant for
cold ice. Greenland simulations which include this further
simplification are compared in Section 5.2 to simulations
without it. In either case, however, the vertical diffusivity,
K = K (H), in the enthalpy-balance equation remains
enthalpy-dependent because of its jump from K0 to Ki atH =
Hs(p). Therefore we use a standard semi-implicit scheme for
the vertical conduction problem (e.g. eqn (5.182) of Greve
and Blatter, 2009).

4.5. On the constant heat capacity simplification
The heat capacity, Ci(T ), of ice varies by ∼10% in
the temperature range between −30◦C and 0 ◦C (Greve
and Blatter, 2009). Also Ci(T ) is approximately linear in

this range,

Ci(T ) = 146.3 + 7.253T , (75)

where T is in Kelvin (eqn (4.39) of Greve and Blatter, 2009).
Note that Hi(T ), the integral of Ci(T ) with respect to T , is
therefore quadratic in temperature. It follows that conversion
between temperature and enthalpy using Eqns (9) and (10)
requires solving quadratic equations.
As a simplest model of heat capacity, we might choose a

constant heat capacity, ci = 2009 J kg−1 K−1 (e.g. Payne and
others, 2000), corresponding to a reference temperature of
Tr = −16.33◦C in Eqn (75). This linearizes the equation for
Hi(T ) so that Hs(p) = ci(Tm(p)− T0) and

H(T ,ω, p) =

{
ci(T − T0), T < Tm,

Hs(p) + ωL, T = Tm and 0 ≤ ω < 1.
(76)

Though this formulation is simplified, it is used by Lliboutry
(1976), Calvo and others (1999) and Katz (2008), who all
employ constant specific heat capacity.
The consequences of using Eqn (76) for Greenland

simulations, versus the more general C = Ci(T ) case, are
small but quantifiable, as described in Section 5.2. However,
the performance cost of using the general C = Ci(T ) case is
also small. It is not clear when the general case is needed in
ice-sheet simulations.

4.6. A minimal drainage model
Observations do not support a particular upper bound on
liquid water fraction, ω, but reported values above 3% are
rare (Pettersson and others, 2004, and references therein). At
sufficiently high ω values, drainage occurs simply because
liquid water is denser than ice. Available parameterizations,
especially the absence of flow laws for ice with ω > 1%
(Lliboutry and Duval, 1985), also suggest keeping ω in the
experimentally tested range. Also, though a parameterized
drainage mechanism is not required to implement an
enthalpy formulation, we observe in model runs that, without
drainage, large strain-heating rates raise liquid water fraction
to unreasonable levels.
For such reasons Greve (1997b) introduced a ‘drainage

function’, and we adapt it to the enthalpy context. Let
D (ω)Δt be the dimensionless mass fraction removed in time
Δt by drainage of liquid water to the ice base. Note that
D (ω) is a rate, and the time-step and drainage rate must satisfy
D (ω)Δt ≤ 1, so that no more than the whole mass is drained
in one time-step. The mass removed in the time-step is
ρ̂wD (ω)Δt . Though Greve (1997b) proposes D (ω) = +∞ for
ω ≥ 0.01, choosing D (ω) to be finite increases the regularity
of the enthalpy solution. Figure 4 shows an example drainage
function which is zero for ω ≤ 0.01 and which is finite.
At ω = 0.02 the rate of drainage is 0.005a−1 while above
ω = 0.03 the drainage rate of 0.05 a−1 is sufficient to move
the whole mass, if it should melt, to the base in 20 years.
Though application of this function allows ice with ω > 0.01,
we observe in modeling use that such values are rare; see
Section 5.2. We cap the ice softness computed from the
flow law, Eqn (64), at its ω = 0.01 level to stay in the
experimentally observed range of ice softness values.
Strictly speaking, inclusion of such a drainage function

implies that the ice mixture is no longer incompressible.
Indeed, drained water is transported to the base by an
un-modeled mechanism. In practice, we must modify the
computation of basal melt rate, and, in a shallow model, also
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the computation of the vertical velocity. Specifically, drained
water adds the basal melt rate, −Mb , to give a new value as
follows:

−M̃b = −Mb +
∫ h

b
ρ̂wD (ω) dz. (77)

The vertical velocity is then computed using incompressibil-
ity and Eqn (77):

w = −M̃b +∇b · (u, v )|z=b −
∫ z

b

(
∂u
∂x

+
∂v
∂y

)
dz ′. (78)

We also modify Eqn (50), or its simplified version, Eqn (66).
In an ice dynamics model, the ice mixture velocity enters

into a mass-continuity equation. Therefore the basal melt
rate, including the drainage contribution, affects the rate of
change of ice-sheet thickness. The basal melt rate also affects
the vertical velocity (Eqn (78)). These effects may or may
not be included in a given ice dynamics model, but sliding
flow can still be strongly influenced by the basal melt rate.
The basal melt rate is the leading control on water pressure
in the subglacial aquifer and thus on the modeled basal
strength (e.g. till yield stress; cf. Bueler and Brown, 2009).
This coupling may be the most important consequence of
inclusion of drainage in an ice dynamics model.
A back-of-the-envelope calculation also suggests the

importance of drainage to an ice dynamics model. Consider
the Jakobshavn drainage basin on the Greenland ice sheet,
with yearly average surface mass balance of ∼0.4ma−1 ice
equivalent (Ettema and others, 2009), area ∼1011 m2 and
average surface elevation ∼2000m. If the surface of this
region were to drop uniformly by 1m in a year, then the
gravitational potential energy released is sufficient to fully
melt 2 km3 of ice. This energy will be dissipated by strain
heating at locations where strain rates and stresses, and basal
frictional heating, are highest. It follows that a model with
3-D gridcells of typical size 1 km3 (e.g. 10 km × 10 km ×
10m) should sometimes generate liquid water fractions far
above 0.01 if drainage is not included. Under abrupt, major
changes in basal resistance or calving-front back pressure,
with corresponding changes to strain rates and thus strain
heating, it is possible that some gridcells of 1 km3 size
are completely melted if time-steps on the order of 1 year
are taken. Model time-steps should be shortened so that
generated liquid water is drained over many time-steps.

4.7. Simplified boundary conditions
In order for ice-sheet and glacier models to get the greatest
benefit from an enthalpy formulation, the surface process
components should report the meltwater-storage-modified
net accumulation,Mh (Eqn (30)), and also separated snowfall
rate, a⊥i , rainfall rate, a

⊥
w , and 2m air temperature to the

ice thermodynamics ‘core’. These quantities are needed to
fully apply the upper surface conditions in Section 3.3. The
surface kinematic equation, Eqn (31), is used in determining
the surface elevation changes, though in shallow models
one may rewrite the kinematic equation to give a map-plane
mass-continuity equation (e.g. Bueler and Brown, 2009), and
Mh appears in this equation. In either case, Mh is needed to
determine the motion of the upper surface of the ice.
Generally Eqn (36) for the upper surface is a Robin

boundary condition (Ockendon and others, 2003) for the
enthalpy balance, Eqn (67). Equation (36) involves both the
surface value of the ice enthalpy and its normal derivative.
In addition to the mass flux rates already needed for

ηb > 0 and
H < Hs(p) ?

H := Hs(p)

H < Hs(p) ?

yes

no

Eqn (49) is
Neumann

b.c. for Eqn (67);

Mb = 0

yes (cold base)

positive thickness
of temperate ice

at base?

H = Hs(p) is Dirichlet

b.c. for Eqn (67)

q = −Ki(H)∇H
at ice base

∇H · n = 0 is Neumann

b.c. for Eqn (67)

q = −k(H, p)∇Tm(p)

at ice base

compute Mb from

Eqn (50) or (66)

no

no

yes

Fig. 5. Decision chart for each basal location. Determines basal
boundary condition for enthalpy field equation (67), identifies the
expression for upward heat flux at the ice base and computes basal
melt rate, −Mb . The basal value of the ice mixture enthalpy is ‘H’;
b.c.: boundary conditions.

the mass-conservation boundary condition, surface process
components need some model to compute qatm, the non-
latent heat flux from the atmosphere, in order to fully exploit
the enthalpy formulation. (Clearly this is beyond the scope
of this paper.) Surface type is also important in applying
Eqn (36); is there a positive thickness layer of firn throughout
the year or is the surface bare ice in the melt season?
Simpler models can use the temperature at the surface

more directly. As noted, Eqn (36) is also often reduced to
the Dirichlet boundary condition, Eqn (37), by neglecting the
conductive heat flux into the ice. In Eqn (37) the temperatures
are for the precipitation itself, but the PISM Greenland
example, below, is yet simpler because such temperature
data are lacking. In glaciological applications, it is common
(e.g. Ohmura, 2001) to use the 2m air temperature, T2m,
as a surrogate for ice surface temperature. In this example
the Dirichlet boundary condition is H = H(T2m, 0,patm), in
terms of the function H(T ,ω,p) defined by Eqn (76), where
patm is the atmospheric pressure.
Figure 5 describes the application of the basal boundary

condition and the associated computation of the basal melt
rate. Note that in the temperate base case, where ηb may
be zero or positive and where H ≥ Hs(p), either Eqn (50)
or Eqn (66) allows us to compute a nonzero basal melt
rate, −Mb . In doing so, however, we are left needing
independent information on the boundary condition to the
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Table 1. Parameters used in Section 5.2. Constants ci and ki were
used for the runs ENTH and TEMP, while Eqns (75) and (79) were
used for run VARCK

Variable Name Value Unit

E Enhancement factor 3 –
β Clausius–Clapeyron 7.9× 10−8 K Pa−1
ci Heat capacity of ice 2009 J kg−1 K−1
cw Heat capacity of liquid water 4170 J kg−1 K−1
cr Heat capacity of bedrock 1000 J kg−1 K−1
ki Conductivity of ice 2.1 Jm−1 K−1 s−1
kr Conductivity of bedrock 3.0 Jm−1 K−1 s−1
ρ̂i Bulk density of ice 910 kgm−3
ρ̂w Bulk density of liquid water 1000 kgm−3
ρ̂r Bulk density of bedrock 3300 kgm−3
L Latent heat of fusion 3.34× 105 J kg−1
g Gravity 9.81 ms−2

enthalpy field, Eqn (67), itself. Because that equation is
parabolic, a Neumann boundary condition may be used but
the ‘no boundary condition’ applicable to pure advection
problems is not mathematically acceptable. Because the
basal melt rate calculation will balance the energy at the
base, a reasonable model is to apply an insulating Neumann
boundary condition, K0∇H ·n = 0, in the case of a positive-
thickness layer of temperate ice, and apply a Dirichlet
boundary condition, H = Hs(p), if the basal temperate
ice has zero thickness. In the discretized implementation,
whether there is a positive-thickness layer is determined
using a criterion such as H(+Δz) > Hs(p(+Δz)).

4.8. On bedrock thermal layers
Ice-sheet energy conservation models may include a thin
layer of the Earth’s lithosphere (bedrock), of at most a few
kilometers. The heat flux, qlith = −klith∇T , which enters
into the subglacial layer energy balance, Eqn (47), varies in
response to changes in the insulating thickness of overlain
ice, and this explains why the temperature in the bedrock
is modeled. An observed geothermal flux field, q⊥geo, is
generally part of the model data, and if a bedrock thermal
layer is present then it forms the Neumann lower boundary
condition for that layer.
Though the numerical scheme for a bedrock thermal

model could be implicitly coupled with the ice above, a
simpler view with adequate numerical accuracy comes from
splitting the conservation-of-energy time-step into a bedrock
time-step followed by an ice time-step. In that case the
temperature of the top of the lithosphere is held fixed, as
a Dirichlet condition, for the duration of the bedrock time-
step. The flux, qlith, at the top of the bedrock is computed
as an output of the bedrock thermal layer model. The (ice)
enthalpy formulation sees this computed flux as a part of its
basal boundary condition (Section 4.7) during its time-step.

5. RESULTS
5.1. Implementation in PISM
The simplified enthalpy formulation of the last section
was implemented in the open-source Parallel Ice Sheet
Model (PISM). Because other aspects of PISM are well
documented (Bueler and others, 2007; Bueler and Brown,

2009; Winkelmann and others, 2011; http://www.pism-
docs.org), we only outline enthalpy-related aspects here.
We note significant implementation changes that update or
replace previous work.
Conservation-of-energy Eqn (74) replaces the temperature-

based equation used previously (e.g. eqn (7) of Bueler
and Brown, 2009). At the upper ice surface, the Dirichlet
condition for enthalpy is determined from an assumed
upper surface temperature. At the ice base, the decision
chart in Figure 5 is applied to determine the boundary
condition for enthalpy. Equations (66) and (77) are used to
compute basal melt, so the drainage and basal melt model
in this paper replaces that of Bueler and Brown (2009).
The finite-difference scheme used here for conservation
of energy is essentially the same as that described by
Bueler and others (2007), but with temperature replaced by
enthalpy. The combined advection/conduction time-stepping
problem in the vertical is solved implicitly, avoiding time-
step restrictions based on vertical ice velocity (cf. Bueler
and others, 2007). For the reasons given in Section 4.8, the
bedrock thermal layer model now couples to the ice enthalpy
problem in an explicit time-stepping manner. The lateral
diffusion scheme for basal water of Bueler and Brown (2009)
is not used; instead, the basal hydrology model is simplified.
Namely, any generated basal melt is stored in place, it is
limited to a maximum of 2m effective thickness, refreeze
is allowed and stored water is removed at a fixed rate of
1mma−1 in the absence of active melting or refreeze.

5.2. Application to Greenland
Our goals here in applying the enthalpy formulation to
Greenland are limited. We show results from the enthalpy
formulation and a cold-ice method, and we compare
the major thermodynamic fields qualitatively. A more
comprehensive sensitivity analysis addressing non-steady
conditions, sliding, spin-up choices, etc., is beyond our
current scope.
To make our results easier to compare with the literature,

we use the European Ice-Sheet Modelling Initiative (EIS-
MINT) set-up for Greenland (Huybrechts, 1998). It provides
bedrock and surface elevation, parameterizations for surface
temperatures and precipitation, and degree-day factors. Our
restriction to the non-sliding shallow-ice approximation is in
keeping with EISMINT model expectations (Hutter, 1983).∗

Because there is no sliding, Fb = 0 in Eqn (66). Three
experiments† were carried out, two using an enthalpy for-
mulation (ENTH and VARCK) and one using a temperature-
based method (TEMP). Parameters common to all runs are
listed in Table 1. Run ENTH uses constant values for specific
heat capacity and heat conductivity, so Eqn (76) applies.
By contrast, VARCK uses the enthalpy formulation based
upon the functions of temperature given by Greve and Blatter

∗The addition of a sliding model requires a membrane stress balance
(Bueler and Brown, 2009). At minimum, this introduces a necessarily
parameterized subglacial process model relating the availability of
subglacial water to the basal shear stress. Interpreting the consequences
of such subglacial model choices, while critical for understanding
fast ice dynamics, is beyond the scope of this paper about enthalpy
formulations.
†These examples are part of the PISM source code distribution under
examples/enth-temp. PISM trunk revision 0.4.1995 was used for these
results.
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Fig. 6. Pressure-adjusted temperature (◦C) at the base for (left) the ENTH run and (right) the TEMP run. Hatched area indicates where the
ice is temperate. Contour interval is 2◦C. The dashed line is the cold/temperate transition surface.

(2009), namely Eqn (75) for Ci(T ) and

ki(T ) = 9.828e
−0.0057 T . (79)

For both ENTH and VARCK the rate factor in temperate
ice is calculated according to Eqn (64) and the temperate
ice diffusivity in Eqn (74) was chosen to be K0 = 1.045 ×
10−4 kgm−1 s−1, which is an order of magnitude smaller
than the value, Ki = ki/ci, for cold ice. As explained in
Section 4.1, this choice may be regarded as a regularization
of the enthalpy equation, but the results of Aschwanden and
Blatter (2009) suggest this value is already in the range where
the CTS is stable with respect to further reductions of K0.
All three runs start from the observed geometry, and the

same heuristic estimate of temperature at depth, and occur
on a 20 km horizontal grid run for 230 ka. At this model
time, the grid is refined to 10 km, all quantities are bilinearly
interpolated to the finer grid and the run continues for an
additional 20 ka. We use an unequally spaced vertical grid,
with spacing from 5.08m at the ice base to 34.9m at the top
of the computational domain, and a 2000m thick bedrock
thermal layer with 40m spacing.
The majority of the Greenland ice sheet has a Canadian

thermal structure, if there is any temperate ice in the
ice column at all, and all three runs agree on this basic
structure.∗ Both methods predict a majority of the basal
area to be cold, with run TEMP giving significantly greater
temperate basal area and temperate volume fraction than
the other runs (Table 2). The spatial distribution of fields
from experiment VARCK is in close agreement with ENTH
and is not shown in the following. Figure 6 shows that
simulated basal temperatures are similar between runs ENTH
and TEMP.

∗For comparison, Aschwanden and Blatter (2009) have modeled a
Scandinavian thermal structure for Storgläciaren, Sweden, with a related
enthalpy method.

Figure 7 shows that where there is a significant amount of
temperate ice in a basal layer, its thickness is greater for TEMP
than for ENTH. (By our definition, ice in ENTH and/or VARCK
is temperate if H ≥ Hs(p) while ice in TEMP is temperate
if its pressure-adjusted temperature is within 0.001K of the
melting point.) The greater amount of temperate ice from
TEMP, both in volume and extent, may surprise some readers,
but there are reasonable explanations. One is that, in parts
of the ice in run ENTH, where the liquid water content
is significant (e.g. approaching 1%), the greater softness
from Eqn (64) implies that shear deformation and associated
dissipation heating are enhanced in the bottom of the ice
column and do not continue to increase in the upper ice
column as the ice is carried toward the outlet. Our result is
consistent with those of Greve (1997b), who observes larger
temperate volume and thickness from a cold-ice simulation
(e.g. table 2 of Greve, 1997b).
Figure 8 shows that basal melt rates are higher for

ENTH than for TEMP. This is explained by recalling the
deficiency of cold-ice methods identified in the introduction.
Namely, at points where ice temperature has reached the
pressure-melting temperature, and where dissipation heating
continues, in a cold-ice method the generated water must
either be drained immediately or it must be lost as modeled
energy, but neither approach is physical. The drainage

Table 2. Measurements at the end of each run. Values are averaged
over 1000 years

ENTH VARCK TEMP

Total ice volume (106 km3) 3.42 3.44 3.50
Temperate volume fraction 0.006 0.007 0.012
Temperate basal area fraction 0.28 0.27 0.43
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Fig. 7. Thickness of the basal temperate ice layer (m) for (left) the ENTH run and (right) the TEMP run. Contour interval is 25m. Dotted areas
indicate where the bed is temperate but the ice immediately above is cold.

method used in TEMP is the one described by Bueler and
Brown (2009), in which an elevation-dependent fraction
of the generated water is drained immediately as basal
melt. This cold-ice method fails to generate as much basal
melt as it should, especially near outlets, because it cannot
conserve the advected latent heat in an energy-conserving
way. Drainage is, in other words, intrinsically more accurate
in polythermal methods, even though a drainage model
must, necessarily, use a parameterization constrained by only
the few existing observations.

Regarding the spatial distribution of basal melt rate seen in
both runs, straightforward conservation-of-energy arguments
(cf. the back-of-the-envelope calculation in Section 4.6)
suggest that in outlet glacier areas the amount of energy
deposited in near-base ice by dissipation heating greatly
exceeds that from geothermal flux. In any case, these
runs used the uniform constant value of 50mWm−2

from EISMINT–Greenland (Huybrechts, 1998), so spatial
variations in our thermodynamical results are not explained
by variations in the geothermal flux.

Fig. 8. Basal melt rate (mma−1) for (left) the ENTH run and (right) the TEMP run. The dashed line is the cold/temperate transition surface.
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6. CONCLUSIONS
Introduction of an enthalpy formulation into an ice-sheet
model, replacing temperature as the thermodynamical state
variable, allows the model to do a better job of conserving
energy. The enthalpy field, Eqn (67), is similar enough to
the temperature version to make the replacement process
mostly straightforward, but the possibility of liquid water in
the ice mixture raises modeling questions that do not arise
for cold-ice methods. These issues include choices about
temperate ice rheology and intraglacial transport (drainage).
One must reformulate the boundary conditions to include
possible latent energy sources and sinks at the boundaries.
That is, one must allow highly mobile liquid water at
the boundaries, both supraglacial runoff and subglacial
hydrology, in the conservation-of-energy equations. We have
therefore revisited conservation of mass and energy in such
thin boundary layers, of necessity. Particular choices of
closure relations are, however, generally beyond the scope
of this work.
We deduce boundary conditions by a new technique

which views jumps of the modeled fields, and thin-layer
transport models, as complementary views of the same
equation. Basal melt rate, Eqn (47), which is apparently more
complete than any such equation found in the literature,
arises from this analysis. The thin-layer concept is well suited
for incorporation of boundary process models into energy-
conserving ice-sheet models.
An enthalpy formulation can be used to simulate either

fully cold or fully temperate glaciers, along with the poly-
thermal general case. Neither prior knowledge of the thermal
structure nor a parameterization of the cold/temperate
transition surface (CTS) is required. Our application to
Greenland shows that an enthalpy formulation can be used
for continent-scale ice flow problems.
The magnitude and distribution of basal melt rate

is a thermodynamical quantity critical to modeling fast
ice dynamics in a changing climate. This field can be
expected to be more realistic in an energy-conserving
enthalpy formulation than in existing temperature-based ice-
sheet models.
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APPENDIX: JUMP EQUATION WITH IN-SURFACE
FLOW AND PRODUCTION
The ‘pillbox’ argument in this appendix, which justifies
Eqn (23), is similar to the argument for the jump equation
(2.15) of Liu (2002).
As shown in Figure 4, consider a volume, V , with smooth

boundary, ∂V , enclosing a portion of a surface, σ. We
wish to compute the jump of a scalar field, ψ, across σ,
but we recognize that this surface is an idealization and
that processes like melt and flow occur in some thin layer
around σ. We therefore suppose Σ± are smooth oriented
surfaces which separate V into disjoint regions V−, V 0 and
V+. Region V 0, between Σ− and Σ+, contains a portion
of σ and the fast timescale thin-layer processes we wish to
model. Let δ0 be the maximum distance between surfaces
Σ±, and let w± denote their normal speeds. Decompose
the pillbox boundary, ∂V , into three disjoint components,
(∂V )± = V± ∩ ∂V and (∂V )0 = V 0 ∩ ∂V . Note that the
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Fig. 9. A pillbox, V , including a thin active layer volume, V 0, which
contains a portion of a surface, σ. Equation (23) describes the
δ0 → 0 limit in which surfaces Σ± bounding V 0 converge to σ.

boundary component, (∂V )0, is a ‘band’ with maximum
height δ0. Suppose ψ is advected at velocity v, produced
at rate π, and experiences an additional non-advective flux,
φ, in V . General balance Eqn (12) applies in V . Assume
that ψ has a finite jump across each surface, Σ±. Following
precisely the logic and definitions used to justify eqn (2.15)
of Liu (2002),∫
V

∂ψ

∂t
dv +

∫
∂V
(ψv +φ) · nda

−
∫
Σ−
[[ψ]]−w− da −

∫
Σ+
[[ψ]]+w+ da =

∫
V
π dv .

(A1)
We will consider the limit δ0 → 0 wherein all (pillbox)

dimensions of V normal to Σ± shrink to zero. In this limit,
Σ± converge to σ, and, as δ0 → 0, we suppose that Σ±

and (∂V )± are all within a normal distance from σ which
is some fixed multiple of δ0. As δ0 → 0 we suppose that
integrals over V do not disappear, although the volume of V
goes to zero, because the thin layer has much larger fluxes
and active phase change processes. Specifically we suppose:

1. there is a well-defined area density, λσ, defined in σ so
that

lim
δ0→0

∫
V

∂ψ

∂t
dv =

∫
σ

∂λσ

∂t
da; (A2)

2. there is an area production density, πσ, defined on σ so
that

lim
δ0→0

∫
V
π dv =

∫
σ

πσ da; (A3)

3. the boundary component, (∂V )0, becomes a smooth
curve, L, in σ, with length element ds; and

4. there is a velocity, vσ, defined in σ and tangent to σ, so
that

lim
δ0→0

∫
(∂V )0

(ψv +φ) · n da =
∮
L
λσvσ · nds. (A4)

The advective bulk flux, ψv, and non-advective bulk flux,
φ, combine in the limit, Eqn (A4), to give an advective
layer flux, λσvσ . On the one hand, any flux, qσ, along the
layer (units [ψ]m2 s−1) can be factored, qσ = λσvσ, by
introducing a layer density, λb (units [ψ]m), and a velocity,
vσ. On the other hand, in the cases appearing in this paper,
such layer fluxes are modeled as advective, with a well-
defined velocity, in the glaciological literature.
To complete the pillbox argument, split the flux integrals

in Eqn (A1) into (∂V )± portions and use Eqns (A2–A4)∫
σ

∂λσ

∂t
da +

∫
(∂V )−

(ψv +φ) · n da +
∫
(∂V )+

(ψv +φ) · n da

+
∮
L
λσvσ · nds −

∫
Σ−
[[ψ]]−w− da −

∫
Σ+
[[ψ]]+w+ da

=
∫
σ

πσ da + o(δ
0),

(A5)
where o(δ0) → 0 as δ0 → 0. In the limit, with normal
vector, nσ, on σ pointing from V− to V+ and with [[ψ]] =
[[ψ]]− + [[ψ]]+ denoting the total jump across σ,

∫
σ

∂λσ

∂t
da +

∫
σ

[[(ψv +φ) · nσ]] da +
∮
L
λσvσ · n ds

−
∫
σ

[[ψ]]wσ da =
∫
σ

πσ da

(A6)

(cf. eqn (2.14) of Liu, 2002).
The divergence theorem allows us to rewrite the line

integral as an integral over σ:∮
L
λσvσ · nds =

∫
σ

∇ · (λσvσ ) da. (A7)

The result is an integral over σ only,∫
σ

{
[[(ψv +φ) · nσ − ψwσ]] +

∂λσ

∂t

+∇ · (λσvσ)− πσ

}
da = 0.

(A8)

Because these arguments can be applied to any part of
σ, Eqn (23) follows. If the area density, λσ, vanishes then
Eqn (A8) implies eqn (2.15) of Liu (2002).
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