Section 4:
Extreme Value Analysis –
An Introduction
Motivation

• What can happen in extreme cases?
 o Design of weather exposed constructions (a pylon, wind power plant, …)
 o Plan constructions for the protection against natural disasters.

• Sea dams in the Netherlands are dimensioned for the one in 10’000 year event. (?!)

• Society is risk-averse!
Outline

• Theoretical Background

• Modelling Block Maxima

• Modelling Peaks over Threshold

• Additional Remarks

• Material based on:
 o Coles 2001 (Chap. 1-4)
Section 4: Extreme Value Analysis – An Introduction

Theoretical Background
Return Value and Return Period

- \(X(T) \): Return Value \(X \) of Return Period \(T \)
 - If \(T \) is measured in years: \(X \) is the threshold that is exceeded in one year with a probability of \(1/T \). (One or more exceedances!)
 - If \(T \) is very large (\(T \gg 1 \) year) this is equivalent to saying that \(X \) is exceeded on average once in \(T \) years.
 - \(X(T) \): Amplitude as function of rareness (the quantile function)

- **Example: Engelberg (daily rainfall)**
 - The \(T=5 \)-year return value rainfall is \(X=70 \) mm. \(<-> \) A rainfall of 70 mm is exceeded in one year with a probability of 20%.
 - The rainfall that occurred on August 21, 1954 (\(X=89.6 \) mm) has a return period of \(T=15 \) years. \(<-> \) Such an event (or larger) is expected on average every 15 years.
What if we’d use data only?

Extreme 2-day precipitation in Entlebuch (1901-2004/5)

<table>
<thead>
<tr>
<th>Year</th>
<th>Precipitation (mm)</th>
<th>Empirical return period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901-2004</td>
<td></td>
<td>2004</td>
</tr>
<tr>
<td>1946.07.05</td>
<td>133</td>
<td>T=52</td>
</tr>
<tr>
<td>1946.08.22</td>
<td>132</td>
<td>T=35</td>
</tr>
<tr>
<td>1984.08.09</td>
<td>150</td>
<td>T=104</td>
</tr>
<tr>
<td>2005.08.21</td>
<td>177</td>
<td>T=?</td>
</tr>
</tbody>
</table>

Empirical return period:
- 2004: T=52, T=35
- 2005: T=105, T=53, T=35, T=27
Extreme Value Analysis

• **Purpose**
 o Find reliable estimates of $X(T)$ for large T (i.e. rare events),
 o even for T larger than the period of observation,
 o including estimates of the uncertainty of $X(T)$.

• **Procedure**
 o Choose an appropriate parametric distribution function
 o Calibrate it such that it describes available data well
 o Extrapolate distribution function
Distribution of Maxima

- **Independent identically distributed random vars:**

 \[X_1, X_2, X_3, \ldots, X_n \quad X_k \sim F(x) \quad iid \]

 - E.g. representative for daily precipitations in a year \((n=365)\)
 - \(F(x):= \text{prob}(X_k \leq x)\), the *parent distribution* (CDF)

- **The Maximum**

 \[M_n = \max(X_1, X_2, X_3, \ldots, X_n) \]

 - E.g. the largest 24-hour total in a year
 - A random variable with:
 \[M_n \sim F^n(x) \]

 - Because:
 \[\text{prob}(M_n \leq x) = \text{prob}(X_1 \leq x, \ldots, X_n \leq x) = \text{prob}(X_1 \leq x) \cdot \ldots \cdot \text{prob}(X_n \leq x) = F^n(x) \]
Illustration

- Distributions of Maxima (M_n) of the exponential distribution
- Distributions of Maxima (M_n) of the normal distribution
- For large n the distribution of M_n converges to one shape.
- Asymptotic shapes for the normal and the exponential parent distributions are the same. (The Gumbel Distr.)
- Convergence is fast for exponential but slow for normal parent distribution.
Extremal Types Theorem

• If distribution of M_n converges with large n …

 o I.e. if there exist $a_n > 0$, b_n, and a non-degenerate distribution $G(x)$ such that:

 $$F^n \left(\frac{x - b_n}{a_n} \right) \xrightarrow{n \to \infty} G(x)$$

• … then the limit distribution $G(x)$ is one of …

 o The Gumbel distribution
 o The Fréchet distribution
 o The Weibull distribution

• … independent of the parent distribution $F(x)$.
Extremal Types Distributions

- The Gumbel distribution (CDF)
 \[G(x) = \exp(-\exp(-x)) \]

- The Fréchet distribution (CDF)
 \[G(x) = \begin{cases}
 0 & x \leq 0 \\
 \exp(-x^{-\alpha}) & x > 0, \alpha > 0
\end{cases} \]

- The Weibull distribution (CDF)
 \[G(x) = \begin{cases}
 \exp(-(x)^{\alpha}) & x < 0, \alpha > 0 \\
 1 & x \geq 0
\end{cases} \]
Asymptotic Distributions Laws

• **The Central Limit Theorem:**
 - The mean of a large number of iid random variables is distributed like the *Normal Distribution* independently of the parent distribution.

• **The Extremal Types Theorem:**
 - The maximum of a large number of iid random variables is distributed like the *Gumbel* or *Fréchet* or *Weibull Distributions* independently of the parent distribution (… if there is convergence at all).
Convergence?

- **In theory**
 - No general assurance of convergence but …
 - … convergence is warranted for continuous parent distributions under fairly general regularity assumptions (well-behaviour of the tail).

- **In practice**
 - It is justified to presume that data from natural phenomena have a parent distribution the maxima of which are converging.
 - Much more care is required with the assumption that the asymptotic limit is applicable:
 - slow convergence with some parent distributions
 - threshold processes may influence the tail
Sketch of Proof

- Max - Stability
 - A distribution function $G(x)$ is max-stable if there exist $a_k (>0)$, and b_k so that:

 \[G^k (x) = G \left(\frac{x - b_k}{a_k} \right), \quad k = 1, 2, 3, \ldots \]

- If $G(x)$ is a limit distribution then it must be max-stable:

 \[
 \begin{align*}
 X_{1,1} & \quad X_{1,2} & \cdots & \quad X_{1,n} & \quad \xrightarrow{n \to \infty} & \quad M_{(n),1} \approx G \\
 X_{2,1} & \quad X_{1,2} & \cdots & \quad X_{2,n} & \quad \xrightarrow{n \to \infty} & \quad M_{(n),2} \approx G \\
 \vdots & & \vdots \\
 X_{k,1} & \quad X_{k,2} & \cdots & \quad X_{k,n} & \quad \xrightarrow{n \to \infty} & \quad M_{(n),k} \approx G \\
 n \to \infty & & & & & \\
 M_{(n,k)} \approx G & \leftrightarrow & \quad M_{(n,k)} \approx G^k
 \end{align*}
 \]
Sketch of Proof

- **Gumbel, Fréchet and Weibull are max-stable.**
 - Can be verified with simple algebra.
 - E.g. Gumbel

\[
G^k(x) = \exp\left(-\exp(-x)\right)^k \\
= \exp(-k \cdot \exp(-x)) \\
= \exp(-\exp(-x + \log(k))) \\
= \exp(-\exp(-(x - \log(k)))) = G\left(x - \log(k)\right)
\]

- **There are no other max-stable distributions than Gumbel, Fréchet and Weibull.**
 - Proof is complex (function theory).
Generalized Extreme Value Distribution

- The GEV Distribution (CDF)

\[GEV(x; \mu, \sigma, \xi) = \exp \left\{ - \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-\frac{1}{\xi}} \right\} \]

where: \(1 + \xi \cdot \frac{x - \mu}{\sigma} > 0 \)

- A combined parametrisation of all three limit distributions
- Three parameters:
 - Location \(\mu \)
 - Scale \(\sigma \)
 - Shape \(\xi \)
- \(\xi = 0 \): Gumbel, unbounded
- \(\xi > 0 \): Fréchet, lower bound
- \(\xi < 0 \): Weibull, upper bound
Which one is “appropriate”?

• The GEV …
 o … takes a special role in statistics.
 o … is theoretically appropriate to modelling extremes (minima, maxima).

• Independent of the nature of original data
 o Wind gusts,
 o Precipitation,
 o Stock market changes,
 o etc.
History of Extreme Value Statistics

Ronald Aylmer Fisher & L.H.C. Tippett
First statement of extremal types theorem

Boris V. Gnedenko
1912-1995
Unification / extension of Extreme Value Theory

Emil Julius Gumbel
1891-1966
Statistical application of theory to estimate extremes

...
Section 4: Extreme Value Analysis – An Introduction

Modelling of Block Maxima
The Block Maxima Approach

Estimate $X(T)$ (for rare extremes) by parametric modelling of *Maxima* taken from large *blocks* of independent data.

Jenkinson 1955, Gumbel 1958
Procedure

• **Build Blocks**
 - Divide full dataset into equal sized chunks of data
 - E.g. yearly blocks of 365/366 daily precipitation measurements

• **Extract Block Maxima**
 - Determine the Max for each block

• **Fit GEV to the Max and estimate** $X(T)$
 - Estimate parameters of a GEV fitted to the block maxima.
 - Calculate the return value function $X(T)$ and its uncertainty.
The Gumbel Diagramm \(X(T)\)

\(T\)-axis is transformed such that Gumbel-Distribution is a straight line.

\[
F(x) = GEV(x; \mu, \sigma, \xi) \quad \text{estimated CDF}
\]

\[
Y(x) = -\log(-\log(F(x))) \quad \text{Gumbel Variate}
\]

Horizontal axis is linear in \(Y\).

\[
T(x) = \frac{1}{1 - F(x)} \quad \text{Return period}
\]

\(x_k \quad k = 1, \ldots, N \quad \text{Block Maxima}
\]

\[
\tilde{T}_k = \frac{N + 1}{N + 1 - \text{rank}(x_k)} \quad \text{plotting points of block maxima } x_k
\]
The Gumbel Diagram

Extrapolation: 200-year return value: 145 mm

Return value: 10-year return value: 82 mm

Return period: Amounts fallen on 2005.08.22 have a return period of 46 years.
Parameter Estimation

• Maximum Likelihood (ML) Estimation
 - Numerically maximize the Likelihood Function
 - Find μ, σ, ξ such that the probability of drawing $\{x_k, k=1,\ldots, N\}$ as random sample from the GEV would be largest.
 - Pro: Obtain approximate confidence intervals (e.g. Coles 2001).
 - Cons: Robustness for small N, numerical procedure

• L-Moments Estimation
 - Set μ, σ, ξ so that the first 3 sample L-Moments are equal to the first 3 L-Moments of the GEV.
 - Formuli for GEV L-moments from Hosking 1990
 - Pros: Robustness, analytical solution.
 - Cons: Best estimate only. Uncertainties (CIs) to be inferred separately.
Parameter Estimation (Example)

- **L-Moments**
 - $\mu = 53.2$ mm
 - $\sigma = 12.6$ mm
 - $\xi = 0.055$
 - $x(T=200) = 131$ mm

- **Max-Likelihood**
 - $\mu = 53.5$ mm
 - $\sigma = 12.5$ mm
 - $\xi = 0.038$
 - $x(T=200) = 127$ mm
Assumptions

• **Original data are identically distributed**
 - May be violated by seasonality, trends, …

• **Original data are independent**
 - May be violated by serial correlation

• **Asymptotic limit. Maxima from a large number of “originals”**
 - Need large blocks

• **Need enough independent episodes from the season with largest values!**
Assessing Goodness of Fit

• **QQ-plot**
 - Check if GEV can adequately describe the data
 - Too small block size and non-stationarities may manifest in inconsistencies

Engelberg 1-day totals 1901-2010
Uncertainty?

- How accurate are parameter estimates?
- How accurate are return values?
- How far is extrapolation justified?
Let’s „roll“ storms

Yearly maximum wind gusts in Zurich 1981-1999

$X_{100} = 183\, \text{km/h}$

$T(\text{Lothar}) = 16\, \text{a}$
Let’s „roll“ storms

\[X_{100} = 205 \text{ km/h} \]
\[X_{100} = 183 \text{ km/h} \]
\[X_{100} = 165 \text{ km/h} \]
Let’s „roll“ storms

Parametric Resampling Confidence Intervals

X_{100}: 145 - 250 km/h

- Large sampling uncertainty.
- Uncertainty of $X(T)$ increases with T.
Confidence Intervals

• **Resampling Confidence Intervals**
 - Simulate random samples (same size) and fit GEV
 - Parametric: random samples from estimated distribution.
 - Non-parametric: Draw samples (with replacement) from the original data.
 - Pros: Generally accurate, applicable to any estimation method
 - Cons: Computationally demanding.

• **Asymptotic Maximum Likelihood Confidence (Delta-Method)**
 - Likelihood-Theory: For large samples the sampling distribution of parameters is multivariate Normal. Variances/covariances are inferred from curvature of Likelihood surface.
 - Pros: fast, analytic
 - Cons: applicable to MLE only, not very accurate for small samples
Confidence Intervals

90% ML confidence

90% resampling confidence

Extreme 1-day Totals
Engelberg 1901–2010

mm
2 10 20 50 100 200

mm
2 10 20 50 100 200

symmetric
asymmetric
What goes wrong here?

Peaks over Threshold

ML-CI (Delta Method)

Index for “Storminess” in Europe.
ERA40, 1958-2002

Vivian, Feb 1990
Confidence Intervals

- **Likelihood-Profile Confidence**
 - Similar to asymptotic ML-CI. Exploits higher moments in the shape of the likelihood function.
 - Converges to asymptotic ML-CI for large samples.
 - Pros: more accurate for small samples, strong shapes, large \(T \) makes better use of information in available data, also accurate for negative shape.
 - Cons: only for ML estimates, computationally demanding.

Coles 2001
ML vs. Likelihood Profile CI

Peaks over Threshold

Vivian, Feb 1990

Index for “Storminess” in Europe.
ERA40, 1958-2002

Likelihood-Profile
ML (Delta Method)
Block Size: What is “large enough”?

- A trade-off between biases (too small block size) and large sampling errors (large blocks, small number of blocks).

- Desirable block size depends on parent distribution
 - Smaller for precipitation (close to exponential distribution)
 - Larger for temperature (close to Normal distribution)

- For the Exponential (Normal) parent distributions GEVs from block sizes >20 (>50) provide a reasonably bias free approximation for return periods between 5 and 100 times the block size.
Other Issues in Practice

• Trends violate iid assumption!
 o Solution: Parametrization of trends. GEV parameters vary smoothly with time (Katz et al. 2002).

• GEV does not make sense for seasonal means (e.g. summer 2003). Not a Maximum of a large block!

• In a network with many stations you will find events with very large “local” return periods every now and then. Citing those results only is misleading. (Don’t fall for sensation journalism!)
Example: August 2005

2005.08.21-22
RR = 205 mm
T > 500a

Extreme 2-Tages Summen
Meiringen
1901 – 2005

Jährlichkeit (Jahre) des 2-Tages Niederschl.: 2005.08.21-22

MeteoSwiss 2006
Section 4: Extreme Value Analysis – An Introduction

Modelling of Peaks over Threshold
The Peak-over-Threshold Approach

Estimate $X(T)$ (for rare extremes) by parametric modeling of independent exceedances above a large threshold.

Note: Hydrologists tend to call this the method of *Partial Duration Series*
Distribution of Exceedances

- Independent identically distributed random variables:
 \[X_1, X_2, X_3, \ldots, X_N \sim F(x) \text{ iid} \]
 - E.g. daily maximum of wind speed over 30 years of observation
 - \(F(x) := \text{prob}(X_k \leq x) \), the parent distribution

- The Distribution of Exceedances
 - \(u \) a threshold (e.g. \(u=10 \text{ m/s} \), about Beaufort 6 or larger)
 - Exceedances: \(y=x-u \)
 - CDF of exceedances \(E_u(y) \):
 \[E_u(y) := \text{prob}(X < u + y \mid X > u) \]
 \[E_u(y) = \frac{F(x = u + y) - F(x = u)}{1 - F(x = u)} \]
Clarification

\[\text{prob}(X > u + y \mid X > u) = 1 - E_u(y) \]

\[\text{prob}(X > u + y \mid X > u) = \frac{1 - F(x = u + y)}{1 - F(x = u)} \]

\[\Rightarrow E_u(y) = \frac{F(x = u + y) - F(x = u)}{1 - F(x = u)} \]
Asymptotic Theorem for Exceedances

- If Block Maxima of $F(x)$ asymptote to GEV …

$$\text{prob}(M_n < z) \approx GEV(z; \mu, \sigma, \xi) \quad \text{for } n \to \infty$$

- … then the distribution of exceedances $E_u(y)$ asymptotes (for large u) to a limit distribution:

$$E_u(y) \approx GPD(y; \tilde{\sigma}, \tilde{\xi}) \quad \text{for } u \to \infty$$

$$GPD(y; \tilde{\sigma}, \tilde{\xi}) = 1 - \left(1 + \frac{\xi}{\tilde{\sigma}} \frac{y}{\tilde{\sigma}}\right)^{-1/\xi} \quad \text{with } \tilde{\sigma} = \sigma + \xi \cdot (u - \mu) > 0$$

- GPD the Generalized Pareto Distribution
- GPD and GEV shape parameters are identical
- GPD and GEV scale parameters are related.

See outline of proof in Coles 2001, p.76
Generalized Pareto Distribution

- The GPD (CDF)

\[GPD(y; \sigma, \xi) = 1 - \left(1 + \frac{\xi y}{\sigma} \right)^{-\frac{1}{\xi}} \]

\(y \geq 0, \quad 1 + \frac{\xi y}{\sigma} \geq 0 \)

- Two parameters:
 - Scale \((\sigma)\), Shape \((\xi)\)
 - \(\xi = 0\): Exponential Distribution
 - \(\xi < 0\): upper bound at \(-\sigma/\xi\)
 - \(\xi > 0\): no upper bound

Vilfredo Federico Damaso Pareto
1848-1923
Procedure

- **Select a threshold** \(u \)
 - Should be large enough to be in asymptotic limit (see later)

- **Extract the exceedances from the dataset**
 - \(n \) values out of the total \(N \) data values
 - Exceedances need to be mutually independent (see later)

- **Fit GPD to exceedances, yields conditional distribution:**
 \[
 \text{prob}(X > x \mid X > u) = 1 - GPD(x - u; \sigma, \xi)
 \]

- **Estimate unconditional distribution and return values**
 \[
 \text{prob}(X > x) = \text{prob}(X > u) \cdot (1 - GPD(x - u; \sigma, \xi))
 \]
 - with \(\text{prob}(X > u) \) estimated as \(n/N \) (the third model parameter)
 - Return values \(X(T) \) from the unconditional distribution
Estimation and CIs

• Exactly as with GEV

• Parameter Estimation
 o Maximum Likelihood Method (find maximum of Likelihood Function numerically)
 o Method of L-Moments (analytical formulæ, see Hosking 1990)

• Confidence Intervals
 o Resampling
 o Asymptotic ML confidence intervals (Delta Method)
 o Likelihood profile

Hosking 1990, Coles 2001
The Exceedance Diagram

Threshold: 30 mm

640 independent exceedances

Max-Likelihood
\(\sigma = 11.3 \text{ mm} \)
\(\xi = 0.07 \)
\(x(T=200) = 133 \text{ mm} \)

Axis in log\((T)\):
Exponential Distribution \((\xi = 0)\) is a straight line.
Assumptions

• **Exceedances are identically distributed**
 - May be violated e.g. by seasonality, by trends
 - May be resolved by stratification, explicit modeling

• **Exceedances are independent**
 - May be violated by serial correlation
 - Much more critical than for block maximum approach
 - In general resolved by *declustering* of original data
 - E.g.: Exceedances should be separated by at least \(m \) days (*runs-declustering*).

• **Sufficiently large threshold (asymptotic limit)**
 - Depends on the parent distribution (fast/slow convergence)
 - Use additional diagnostics for appropriate choice (see later)
Threshold Selection

- Parameter Dependence on Threshold
 - If exceedances of threshold \(u \) are GPD then exceedances of threshold \(v > u \) are also GPD with:

\[
GPD(y, \sigma_v, \xi_v) = \frac{GPD((v - u) + y, \sigma_u, \xi_u)}{GPD((v - u), \sigma_u, \xi_u)} \quad \text{for all } y > 0
\]

- Can only be satisfied if:

\[
\xi_v = \xi_u, \quad \sigma_v - \xi_v v = \sigma_u - \xi_u u
\]

At sufficiently large thresholds \(u \):
- (a) shape \(\xi \) is independent of threshold
- (b) modified scale \((\sigma - \xi u) \) is independent of threshold
Threshold Selection

Diagnostics for threshold selection

Engelberg, daily precipitation (mm) 1901-2010

Be aware:
Stability within confidence limits does not warrant true stability.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Threshold Selection

Mean Residual Life Plot:

- If exceedances are GPD

\[
\text{prob}(Y_u < y) = GPD(y, \sigma_u, \xi)
\]

- Then expected value of exceedances is:

\[
E(Y_u) = \frac{\sigma_u - \xi \cdot u}{1 + \xi}
\]

I.e. for sufficiently large thresholds, the mean of the exceedances depends linearly on threshold.
Block-Max vs. Peak-over-Thresh

Block Maximum:
GEV, 110 maxima

Peak-over-Threshold:
GPD, 640 peaks > 30 mm

Engelberg 1901–2010

- **Block Maximum:**
 - X(100) = 152 mm
 - 127 mm
 - 101 mm

- **Peak-over-Threshold:**
 - X(100) = 138 mm
 - 120 mm
 - 105 mm
Block-Max vs. Peak-over-Thresh

• **Block Maximum Approach**

 • **Pros**
 - Theoretical assumptions are less critical in practice.
 - Independence of maxima can be achieved by selecting large block size.
 - More easy to apply.

 • **Cons**
 - Estimation uncertainties can be large because sample size is small.

• **Peak-over-Threshold Approach**

 • **Pros**
 - Smaller CIs if a “small” threshold is justified. (More independent exceedances than block maxima.)

 • **Cons**
 - Independence assumption is critical in practice. Need declustering techniques.
 - Less easy to apply in practice.
Section 4: Extreme Value Analysis – An Introduction

Additional Remarks
Additional Remarks

• Precipitation Extremes
 o Dependence of return levels on duration is commonly described by an *Intensity-Duration-Frequency* Curves (also *Depth-Duration-Frequency*) using scaling relationships between durations.

![Log Precipitation Rate vs Log Measurement Interval](image)

Log Precipitation Rate (Intensity) vs Log Measurement Interval (Duration)

Koutsoyannis et al. 1998; Geiger, Zeller, Röthlisberger, 1990
Additional Remarks

- **Hydrological Extremes**
 - Hydrological processes involve threshold processes. Only very few events may have been observed from the extreme tail. Very large block size needed.
 - Statistics alone may be inadequate. Physical modelling of scenarios instead.

Hourly runoff extremes, Langeten

Liechti, 2008
Additional Remarks

- **Spatial Extremes**
 - Utilize concepts of spatial dependence or regional pooling of data to reduce uncertainties in estimation.
 - Combine extreme values analysis and spatial statistics to estimate extremes for unobserved locations.