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Annual, summer or growing season (April-September) resolved centuries-long
surface temperature reconstructions have been made available for the Northern
Hemisphere (NH) (e.g. Briffa and Osborn 2002 and references therein). They are
based on natural proxy data or achieved through multi-proxy networks. These
estimates point to interannual-to-interdecadal temperature variability over the past
millennium. However, they provide less information at the continental and seasonal
scale. For instance, these NH reconstructions cannot resolve the degree and length for
specific periods such as the ‘Little Ice Age’ cooling over Europe.

Here, we present seasonal surface temperature reconstructions at 0.5 x 0.5 degree
resolution (60 km x 60 km) for European land areas back to AD 1500, statistically
reconstructed using a combination of long instrumental series and historical
documentary records. Principal component regression analysis has been used to
derive the statistical relationships between the climate information for the last 500
years and the large-scale temperature fields. We applied different
calibration/verification exercises within the twentieth century in order to obtain
information on the spatio-temporal stability of the results and the quality of the
estimations. For the final 500-year reconstructions, the statistical relationships
obtained over the 1901-1995 calibration period were then applied to the pre-1900
data. Error measures (RE statistics) will be discussed. Further, uncertainty ranges for
the reconstructed European seasonal temperature are given by the +/- 2 standard error
which was derived from the calibration period.

In order to obtain seasonal information on the temperature evolution over Europe,
we averaged all the 5050 grid points to winter and summer time series and studied
their variability over the last 500 years.

Cooler European winters were generally experienced in parts of the sixteenth and
seventeenth centuries with lowest values within the Maunder Minimum (1670-1700)
(not shown). This period was dry in many parts of Europe connected with strong
advection of continental air from Russia. Winters were also cold from the mid
eighteenth until the end of the nineteenth century. Warmer winters were experienced
around 1530, 1730 and in parts of the twentieth century. The winter of 1709 was the
coldest over the last 500 years with lower than 3.5°C values compared to the long-
term twentieth century mean. Figure 1 shows the spatial temperature anomaly pattern
of this exceptional winter. It reveals negative departures of more than 5°C over
Central and Eastern Europe, Southern Scandinavia as well as over Western Russia.
Negative anomalies of the order of 2°C are found over the remaining parts of Europe.
Only over Iceland the reconstructions point to warmer conditions.



Figure 1: European land temperature anomalies (in °C wrt 1961-1990) for the very cold
winter (DJF) 1709 (from Luterbacher et al. 2003).

The warmest European winter was 1990 with around 2°C higher values in
comparison to the 1901-1995 mean.

Slightly warmer European summers were observed from around 1530 to 1570,
from the 1750s to the mid-nineteenth century, around 1950 and at the end of the
twentieth century. Cooler summer periods were prevalent around 1600, 1700 and
1900 (not shown). The overall European warmest summer over the entire 500-year
period was in 1811 with 1.5°C above normal temperature whereas 1902 was the
coolest European summer with a similar, but negative departure compared to the
1901-1995 average.

The European and the NH land temperatures, at annual scale, are highly correlated
over the last 140 years of instrumental data and indicate an overall warming trend of
around 1°C (depending on the season). However, for the pre-1860 periods, except for
the mid-sixteenth century and the Maunder Minimum, there is less agreement
between European land and NH temperature estimates (Figure 2). This could be
attributed to uncertainties in the reconstructions, but also could partly reflect different
decoupling and climate behavior at continental scale compared to the entire NH.



Figure 2: Various estimates of large-scale Northern Hemisphere and European land
temperature variations over the last 500 years, with reference to the mean from 1961-
1990 (Luterbacher et al. 2003). The Northern Hemisphere records were re-calibrated
with linear regression against the 1881-1960 mean annual temperature observations
averaged over land areas north of 20°N (Briffa and Osborn, 2002). All time series are
smoothed with a 30-year Gaussian filter (Luterbacher et al. 2003).

The spatio-temporal highly resolved reconstructions offer extended insight in the
European surface temperature response to volcanic eruptions. We calculated seasonal
spatial temperature anomalies following sixteen major tropical volcanic eruptions
over the last centuries. Superposed epoch analysis is performed to identify the mean
climate response to large volcanic eruptions (Fischer et al. 2003).

The composite temperature field reveals negative anomalies for the two summers
after an eruption, with a significant maximum cooling in the second summer (Figure
3, left panel). A very distinct cooling effect (up to 1.5°C) occurs in Northern Europe.
Over the Mediterranean no significant effect can be noticed. The tropospheric summer
cooling can be explained by radiative cooling due to scattering by stratospheric
aerosols (Robock et al. 2000 and references therein). The composite temperature
pattern in the second winter (Figure 3, right panel) after an eruption indicates a strong
warming, in particular over Northern Europe (more than 2°C) and somewhat cooler
conditions over the Mediterranean. The warming is associated with a sea level
pressure (SLP) pattern resembling a strong positive NAO mode (not shown). We
assume that this reflects a dynamic response to the strengthening of the equator-to-
pole temperature gradient in the lower stratosphere, caused by radiative heating of the
aerosol layer in the tropics (Kirchner et al. 1999). An additional explanation could be
a strengthened polar vortex through aerosol-induced tropospheric cooling in the
subtropics (Stenchikov et al. 2002). The composite temperature field of the first
winter following an eruption shows a similar although less pronounced pattern (not
shown).



Figure 3: Composite European land surface temperature anomaly field (°C, shaded) of
the second summer (left panel) and second winter (right panel) following sixteen selected
major volcanic eruptions during the period 1500—1998. The green contours mark the
statistical significance as p-values of the Wilcoxon Rank Sum Tests (from Fischer et al.
2003).

In the last part of the talk, we will address the question of the importance of
natural and documentary proxies (tree-ring widths and densities, speleothem band
width, ice core d18O and accumulation, coral d18O, varve thickness; temperature and
precipitation indices) for European and North Atlantic boreal cold (October-March)
and warm (April-September) temperature reconstructions (Pauling et al. 2003). We
performed multiple regression, backward elimination and cross-validation techniques
using a set of various natural and documentary predictors (Figure 4). The analysis was
done for each grid point separately. We consider the last remaining predictor of the
backward elimination procedure as the most important one for the grid point
concerned (not shown).

Figure 4: Locations of proxies. The spatial coverage of this map corresponds to the
temperature grid used as predictand (from Pauling et al. 2003).

Figure 5 displays the distribution of the most important predictors for boreal
winter (left panel) and boreal summer (right panel) temperature. For winter,



documentary data are superior to natural proxies over large areas of continental
Europe, whereas tree-ring data proved to be the strongest predictor for summer
over the continent, and parts of the Atlantic.

Figure 5: Spatial distribution of the most important predictors for boreal winter (October to
March; left panel) and summer temperature (April to September; right panel) determined
from the predictor set depicted in Figure 1 through backward elimination. White areas
indicate missing data (from Pauling et al. 2003).

Ice cores are the most important predictors for the temperature in both seasons
around Greenland. The Red Sea corals are only for a few grid points the best predictor
as they appear to represent mainly regional temperature conditions. The Scottish
speleothem turned out to be valuable for large parts of the North Atlantic and adjacent
land areas during both seasons. However, a number of calibration/verification
exercises using data from the period 1871-1974 revealed that there are instabilities in
the speleothem-temperature relationship whereas the importance of the tree-rings and
the documentary indices remained stable over that time interval (Pauling et al. 2003).
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