

Simulation of physical processes and feedbacks active within the 2003 European summer heatwave

Erich Fischer¹, <u>Sonia I. Seneviratne¹</u>, Daniel Lüthi¹, Pier-Luigi Vidale², and Christoph Schär¹

¹Institute for Atmospheric and Climate Science ETH, Zürich, Switzerland ²NCAS Centre for Global Atmospheric Modelling, University of Reading, UK

erich.fischer@env.ethz.ch

Summer 2003

Land surface radiative temperature anomaly July/Aug 2003 wrt the mean of 2000, 2001, 2002 and 2004 (NASA Earth Observatory, Reto Stöckli et al. 2004)

- Very likely the hottest European summer over the past 500 years
- 22,000-35,000 heat-related deaths across Europe
- Crop losses of around US\$ 12.3 billion and damage due to forest fires in Portugal of US\$ 1.6 billion (Swiss RE).
- Synoptic patterns that lead to the heatwave are consistent with climate-change scenarios

Objectives and project overview

Objectives

- Improve the physical understanding of the processes involved in the formation and persistence of the summer heatwave 2003
- Special focus on the role of soil moisture and land surface processes in the evolution of the heatwave

Approach

• Regional climate simulations including sensitivity experiments with perturbed spring soil moisture

Simulations' set-up

Model domain, topography [m.a.s.l.] and subregions.

CHRM simulations

- regional climate model based on DWD HRM, climate modifications by Lüthi et al. (1996); Vidale et al. (2003)
- spatial resolution: 56 km
- boundary conditions: ECMWF analyses (2003) and ERA-40 (1970-2000)
- 12-month simulations
- 5 control members (ensemble simulations) and 10 sensitivity experiments

Soil water experiments

- Control ensemble: 5 members
- 10 runs with perturbed soil water initialization

	Initialization date	Perturbation	
CONTROL RUNS 1/2/3/4/5	Jan 1/2/3/4/5 2002	unchanged	
SOILW - 50%	Jan 2002	- 50% Apr 03)
SOILW - 25%	Jan 2002	- 25% Apr 03	
SOILW - 20%	Jan 2002	- 20% Apr 03	
SOILW - 15%	Jan 2002	- 15% Apr 03	
SOILW - 10%	Jan 2002	- 10% Apr 03	
SOILW +10%	Jan 2002	+15% Apr 03	
SOILW +15%	Jan 2002	+25% Apr 03	
SOILW +20%	Jan 2002	+25% Apr 03	
SOILW +25%	Jan 2002	+25% Apr 03	
SOILW +50%	Jan 2002	+50% Apr 03	J

Perturbed

CTL

Validation: Simulated >>

m

Temperature (2m) and geopotential height anomaly (500hPa) during summer 2003 wrt CHRM run 1970-2000.

Validation: Temperature anomaly 2003

Temperature (2m) anomaly in June 2003 wrt 1970-2000.

Validation: Daily local temperature

Daily Temperature [K] measured in Puechabon and simulated by CHRM for 2003

Daily temperature (2m) in spring and summer 2003 in Southern France.

Sensitivity experiments: Soil water

Monthly soil water anomaly 2003 over Europe.

Comparison with GRACE and GLDAS

Comparison to climatology

IAMAS 2005

Temperature anomaly

Dry run → larger (more than 2K) and spatially more extended anomalies

Z 1000 anomaly

Dry run → surface heat low

Z 500 anomaly

Dry run → positive 500hPa height anomaly POSITIVE FEEDBACK?

Conclusions

- The control experiments represent well the main characteristics of the summer 2003
- Anticyclonic forcing, strong radiative anomalies and the lack of precipitation in spring and early summer contributed to a rapid loss of soil water resulting in reduced latent cooling
- The loss of soil water likely contributed to a large part of the summer temperature anomaly (possibly up to 2K)
- Negative soil water anomalies result in the formation of a surface heat low and strengthen the positive height anomaly in the upper troposphere -> positive feedback?
- The initial anomalies do not have a direct impact on the evolution of the heatwave but rather on its strength

Next steps/Outlook

- Compare evolution of turbulent fluxes and precipitation
 anomalies with observational data
- Investigate the surface energy balance anomalies
- Conduct simulations without land-atmosphere coupling (soil moisture prescribed to climatological value)

Simulation of physical processes and feedbacks active within the 2003 European summer heatwave

Erich Fischer¹, <u>Sonia I. Seneviratne¹</u>, Daniel Lüthi¹, Pier-Luigi Vidale², and Christoph Schär¹

¹Institute for Atmospheric and Climate Science ETH, Zürich, Switzerland ²NCAS Centre for Global Atmospheric Modelling, University of Reading, UK

erich.fischer@env.ethz.ch